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Motivation

* Energetic particle (EP)-driven instabilities can induce
significant alpha particle redistribution and losses to
the first wall of fusion reactors.

* Energetic particle can interact with thermal plasma
strongly: affect equilibrium, stability and transport. EP
physics is a key element for understanding and
controlling burning plasmas.

 M3D-K simulations of beam-driven modes in NSTX are
carried out for code validation and physics
understanding.



Beam-driven fishbone instability is routinely observed in NSTX
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Fishbone and NRK (LLM) were observed in STs and tokamaks

Frequency [kHz] I.T. Chapman et al. Nucl. Fusion 50, 045007 (2010)
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M3D-K is a global nonlinear kinetic/MHD hybrid simulation code

for toroidal plasmas
G.Y. Fu, J. Breslau, L. Sugiyama, H. Strauss, W. Park, F. Wang et al.

p?=— P,-V-P, +JxB s vy
! dt
J=VxB %=—VxE E+vxB=n/

ot

* The energetic particle stress tensor, P,, is calculated using drift kinetic or
gyro-kinetic equation via PIC.

Mode structures are evolved self-consistently including non-perturbative
effects of energetic particles.

* Include plasma rotation.

G.Y. Fu et al, PHYSICS OF PLASMAS 13, 052517 (2006)



Linear stability and nonlinear dynamics of the fishbone mode in

spherical tokamaks: previous results
F. Wang, G.Y. Fu, J. Breslau, J.Y. Liu, Phys. Plasmas 2013

* We considered NSTX plasmas with a weakly reversed q profile and q,,,,
close but above unity. For such g profile, fishbone and non-resonant kink
mode (NRK) have been observed in NSTX and MAST. Rotational effects

were neglected.

 M3D-K simulation results showed that both NRK and fishbone can be
unstable in such profile. A fishbone instability preferentially excited at
higher q,,;, which consistent with the observed appearance of the
fishbone before the “long-loved mode” in MAST and NSTX experiments.

* Nonlinear simulations showed that an m/n=2/1 magnetic island is found
to be driven by the fishbone instability, which could provide a trigger for
the NTM.



New results in this work

e Effects of toroidal rotation on linear stability.

* Nonlinear phase space dynamics associated with frequency chirping
down.



Equilibrium profile and parameters
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Rotation effect is destabilizing for fishbone at higher q,., -

By = 0.395 without rotation
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By = 0.395 with rotation
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Rotation effect is also destabilizing for fishbone at lower g,

By = 0.395 without rotation By = 0.395 with rotation
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The mode structure is different at low q,,,, and high g,
and rotation also change the mode structure at high g,

By = 0.395 without rotation

B; = 0.395 with rotation
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Passing and trapped linear resonance location in
phase space
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1. Nonlinear evolution:

(1) mode saturates with strong downward frequency chirping,
(2) Both trapped and passing particles contribute to mode drive; trapped particle drive becomes more important nonlinearly;
(3) lost particles also play a role in driving the mode nonlinearly
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Mode structure broaden at low field
side nonlinearly.
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The key different between passing and trapped particles

resonant frequency decreases/increases as a function of
P, for trapped/passing particles

pu = [7.00,7.50]

w=1[7, 7.5]
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Nonlinear dynamic of trapped particles with initial frequency close to the
linear mode frequency:
almost all of those particles stay in resonance as frequency chirps down
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Nonlinear dynamic of trapped particles with initial frequency
smaller than the linear mode frequency,
most of those particles turn into resonant ones and stay in
resonance as frequency chirps down
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Nonlinear dynamic of trapped particles with initial frequency

larger than the linear mode frequency:

fraction of those particles turn into resonant ones and stay in

resonance as frequency chirps down
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Nonlinear dynamic of passing particles with initial frequency
close to the linear mode frequency:
only some of those particles stay in resonance; majority of those
particles become non-resonant as frequency chirps down
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The distribution function become flat around the resonant region, and as the
mode frequency chirping down, trapped particles are transported from the
core to the edge and flattening region becomes broader
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Conclusions

Rotation effect is destabilizing for fishbone at higher and lower q,,,;,, -
Linearly, passing particles are also important to drive fishbone mode.

The fishbone nonlinear chirping is due to the trapped resonant particles moving
outward radially and keeping in resonance with the mode. Correspondingly mode
structure is broadened at low field side.

Due to the different resonant frequency profiles in phase space, majority of
passing particles become non-resonant nonlinearly while trapped resonant
particles stay in resonance as frequency chirps down.

Nonlinearly, as the mode frequency chirping down, linearly non-resonant particles
can turn into resonant ones. This provides additional drive to sustain the mode.

The phase space island width is large in P, leading to a significant flattening region
in the distribution function. This is different from the hole/clump structure
predicted by Berk-Breizman theory.



