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• Large area, low capacitance absolute diodes for high sensitivity,

  large bandwidth  and flat spectral response

• Versatile filtering system (‘spectroscopic’ or ‘imaging’ configuration)

• Low energy capability (E ≥≥≥≥10 eV) for low T e imaging  (e.g., start-up)
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Low energy (P rad) imaging of MHD during  CHI

•  f≈≈≈≈ 4.3 kHz,  n =1 ‘CHI’ mode

•  Large outboard amplitude

•  Mode trajectory consistent with open flux surface

•  Tens of eV core from ‘two-color’ (USXR/P rad) imaging
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High speed and sensitivity needed for NSTX MHD

• 300 kHz bandwidth,  up to  600 kHz sampling  and SNR ≈≈≈≈ 100

enable imaging  of  the low amplitude modes typical of  q 0 >1 operation
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Measured pattern Simulated 3/2 pattern
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Isolated modes identified through phase analysis

• Good match between USXR and EFIT field line trajectory in L-mode
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‘Two-color’ imaging used for  coupled modes

• Strong NSTX toroidicity couples core and peripheral MHD

• Simultaneous ‘two-color’ filtering often enables separating the modes

L-mode  108938



Hollow USXR emissivity complicates H-mode imaging
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L-mode H-mode

• Intense periphery and faint core emission in H-mode

• Large peripheral fluctuations ‘hide’ weak core fluctuations

• Hollow impurity profile + low Z eff the main reason
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Impurity profiles from modeling of USXR data

• USXR data + high resolution spectra modeled with HULLAC + MIST

• Hollow Z eff with central Z eff  -> 1 in high performance H-modes

• Two transport ‘barriers’ at  r/a ≈≈≈≈ 1 and r/a ≈≈≈≈ 0.6 ?

Zeff  in H-mode 109070

2

4

6

8

0 0.2 0.4 0.6 0.8 1

r/a

0.3 s

0.4 s

0.5 s



USXR system applied to impurity transport

Motivation
•  Low-Z impurity transport offers independent probe 

   of the ion channel:

  - χχχχi from power balance still uncertain (D. Gates APS02)

    - electron channel strongly dominates

        

    Tools
• Brief, non-perturbing Neon puff  into beam heated discharges

• Ultrasoft X-ray imaging + high resolution spectroscopy

• Atomic physics + transport modeling
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Neon injected in quiescent, DND  L-mode shots

1.5 MW NBI

5 ms Neon puff

• Injection is non-perturbing (n Ne/ne ≈≈≈≈ 0.5%)

• Fast puff enhances contribution of diffusive term
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•  Neon contribution from consecutive, reproducible shots

•  Average emissivity from  the up/down profiles (symmetric)

•  Inclusion of  peripheral charge states (P rad) improves D, V estimate
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‘Three color’ setup measures all  Neon charge states
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Neon penetration at  4.5 kG/1 MA

• Slow core penetration despite fast rise in peripheral Neon density

• Best fit modeling (MIST) indicates core D in the  neoclassical range

• No significant pinch velocity  (V < 0.5 m/s)

• Microstability computations predict ITG turbulence intrinsically

  suppressed in NSTX and not  ExB shear effect (C. Bourdelle NF 02)
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Neon diffusion and turbulence decrease at high field

Turbulence correlation
length at r/a ≈≈≈≈ 0.9
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• Field scaling of Neon diffusion and of peripheral turbulence
  suggest strong and favorable scaling of ion transport with ρρρρ*

•  Electron transport seems to be the main challenge for  STs



Miniature re-entrant array developed for tomography

•  Re-entrant vertical array  avoids vignetting by in-vessel structures

•  Prototype 200 kHz array (outboard) installed for the coming run

•  Toroidally displaced arrays for RWM work

New inboard
re-entrant
array



100 kHz 1300-pixel tangential USXR array
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Summary

• Fast and sensitive USXR system uses large area AXUV diodes

• MHD imaging/tomography challenging in NSTX  due to mode

  coupling and hollow emissivity profiles (H-mode)

• Re-entrant 200 kHz arrays developed for tomography of low-m modes

• Continuously sampling tangential array proposed for imaging of

  high-m modes, RWM, ELMs

• USXR system offers powerful tool for perturbative transport


