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® EBW has accessibility to the plasma center in ST Wpe >> Wee- plas-
mas.

® Strong cyclotron damping of these electrostatic waves holds the promise
of localized, highly efficient CD.

® Conventional wave modes have difficulties with accessibility or too
much/little damping. (For example, HHFW can strongly damp on
beam ions.)

® Good coupling to plasmas is theoretically possible:
- Ram et al., PoP 7, 4084 (2000); Cairns et al, ibid., 4126.

® Emission experiments demonstrate up to 100% coupling:
P.K. Chattopadhyay et al. and G.Taylor et al., 14th RF Pwr in
Plasmas, Oxnard (2001).

® Ray tracing (GENRAY, Smirnov and Harvey) and CD calculations with
the well benchmarked CQL3D Fokker- Planck code show efficient
current drive:
- Forest, Chattopadhay, Smirnov, PoP 7, 1352 (2000)

® |n following comparison of ECCD with DIlI- D experiment (Petty et al.,
14th RF, Oxnard), there are no free fitting parameters.



MEASURED ECCD FROM MSE DATA IS IN GOOD AGREEMENT
WITH FOKKER-PLANCK CODE INCLUDING E)| EFFECT
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GENRAY Ray Tracing Code

® General ray tracing code, applicable for all modes.

® Ray tracing is is 3D R,Phi,Z- coordinates, avoiding singularities at
plasma edge and magnetic axis.

® Includes dispersion relations for relativistic plasma by Mazzucato/Fidone/
Granata, Shkarofsky, Forest full hot plasmasStix dispersion, and cold
plasma.

® Numerical integration is Runge- Kutta, including numerical or analytic
derivatives of the dispersion relation solutions.

® Has been applied to EBW, FW, LH, EC (O and X, 1st and 2nd har-
monic) modes.

® Developed by Smirnov (primarily) and Harvey for previous 7 years.

® User manual available.

® Following slides show application to EBW in NSTX,

for CD and emission/T_e studies.



Above Midplane Launch of EBW, with n_par=[-0.25,+0.25] over 10cm pol. length.
NSTX: n_e=6el3/cc, T _e=3 keV.

==> strong n_par downshift, penetration to cyclotron layer
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Below Midplane Launch of EBW, with n_par=[-0.25,+0.25] over 10cm pol

NSTX: n_e=6el3/cc, T_e=3 keV.
==> strong n_par upshift, penetration to cyclotron layer.
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Midplane Launch of EBW, with n_par=[-0.25,+0.25] over 10cm pol length.

NSTX: n_e=6el3/cc, T_e=3 keV.

==>n_par is focussed to an absorption point near the cyclotron layer.

Some rays is this set (not shown) had n_par ==>0 and zero cyclotron damping
(i.e., became perpendicularly propagating Bernstein modes).
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Midplane Launch of EBW, with n_par=[-0.25,+0.25] over 10cm pol length.

NSTX: n_e=6el3/cc, T_e=3 keV.

==>n_par is focussed to an absorption point near the cyclotron layer.

Some rays is this set (not shown) had n_par ==>0 and zero cyclotron damping
(i.e., became perpendicularly propagating Bernstein modes).
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CQL3D Fokker- Planck Code

® Calculates the distributions fe,i(uH,uL,p t) of electrons and/or ions
resulting from Coulomb collisions, RF QL diffusion, toroidal Egc, NBI,
and radial transport.

® Ray data from GENRAY gives QL diffusion data.

® Uses full non- linear 2D Coulomb collision operator and full Stix QL
diffusion operator.

® Applied to EBW, EBWCD efficiency is 0.07A/W for the central CD
in 613 cm~3, 3 keV NSTX plasma. This is efficiency n = 0.04
x10%°m~—2A /W. Optimizations are yet to carried out.

® Following slides show the QL diffusion coefficient, fe at interme-

diate radius, and the radial profiles of deposition and CD.



u_perp/unorm

CQL3D EBW QL Diffusion Coeff and Resulting Electron f_e(u,theta).

(For one of 21 flux surfaces.)
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EBW Power Deposition and Driven Current

*Above midplane launch case.

*Current is driven near the axis in negative dirn and at intermediate
radii in the positive dirn, due to n_par variation.

*CD efficiency near the axis is 0.07 A/W,
giving efficiency eta=0.04 (not optimized).
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