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• EBW has accessibility to the plasma center in ST ωpe >> ωce- plas-
mas.

• Strong cyclotron damping of these electrostatic waves holds the promise
of localized, highly efficient CD.

• Conventional wave modes have difficulties with accessibility or too
much/little damping. (For example, HHFW can strongly damp on
beam ions.)

• Good coupling to plasmas is theoretically possible:
- Ram et al., PoP 7, 4084 (2000); Cairns et al, ibid., 4126.

• Emission experiments demonstrate up to 100% coupling:
P.K. Chattopadhyay et al. and G.Taylor et al., 14th RF Pwr in
Plasmas, Oxnard (2001).

• Ray tracing (GENRAY, Smirnov and Harvey) and CD calculations with
the well benchmarked CQL3D Fokker- Planck code show efficient
current drive:
- Forest, Chattopadhay, Smirnov, PoP 7, 1352 (2000)

• In following comparison of ECCD with DIII- D experiment (Petty et al.,
14th RF, Oxnard), there are no free fitting parameters.
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GENRAY Ray Tracing Code

• General ray tracing code, applicable for all modes.

• Ray tracing is is 3D R,Phi,Z- coordinates, avoiding singularities at
plasma edge and magnetic axis.

• Includes dispersion relations for relativistic plasma by Mazzucato/Fidone/
Granata, Shkarofsky, Forest full hot plasmaStix dispersion, and cold
plasma.

• Numerical integration is Runge- Kutta, including numerical or analytic
derivatives of the dispersion relation solutions.

• Has been applied to EBW, FW, LH, EC (O and X, 1st and 2nd har-
monic) modes.

• Developed by Smirnov (primarily) and Harvey for previous 7 years.

• User manual available.

• Following slides show application to EBW in NSTX,

for CD and emission/T e studies.
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Above Midplane Launch of EBW, with n_par=[−0.25,+0.25] over 10cm pol. length.

==> strong n_par downshift, penetration to cyclotron layer

NSTX: n_e=6e13/cc, T_e=3 keV.
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Below Midplane Launch of EBW, with n_par=[−0.25,+0.25] over 10cm pol. length.

NSTX: n_e=6e13/cc, T_e=3 keV.

==> strong n_par upshift, penetration to cyclotron layer.
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NSTX: n_e=6e13/cc, T_e=3 keV.

==> n_par is focussed to an absorption point near the cyclotron layer.

Midplane Launch of EBW, with n_par=[−0.25,+0.25] over 10cm pol length.

 (i.e., became perpendicularly propagating Bernstein modes).
Some rays is this set (not shown) had n_par ==>0 and zero cyclotron damping
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NSTX: n_e=6e13/cc, T_e=3 keV.

==> n_par is focussed to an absorption point near the cyclotron layer.

Midplane Launch of EBW, with n_par=[−0.25,+0.25] over 10cm pol length.

 (i.e., became perpendicularly propagating Bernstein modes).
Some rays is this set (not shown) had n_par ==>0 and zero cyclotron damping



CQL3D Fokker- Planck Code

• Calculates the distributions fe,i(u‖,u⊥,ρ t) of electrons and/or ions
resulting from Coulomb collisions, RF QL diffusion, toroidal Edc, NBI,
and radial transport.

• Ray data from GENRAY gives QL diffusion data.

• Uses full non- linear 2D Coulomb collision operator and full Stix QL
diffusion operator.

• Applied to EBW, EBWCD efficiency is 0.07A/W for the central CD
in 6e13 cm−3, 3 keV NSTX plasma. This is efficiency η = 0.04
x1020m−2A/W . Optimizations are yet to carried out.

• Following slides show the QL diffusion coefficient, fe at interme-

diate radius, and the radial profiles of deposition and CD.
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*Current is driven near the axis in negative dirn and at intermediate

   giving efficiency eta=0.04 (not optimized).

   radii in the positive dirn, due to n_par variation.
*CD efficiency near the axis is 0.07 A/W, 

*Above midplane launch case.

Power Density (Watts/cc) and
Integrated Power (Watts)

Current Density (A/cm**2) and
Integrated Current Density (Amps)

EBW Power Deposition and Driven Current


