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Wave particle interaction in a magnetic field is a
fundamental dynamical process in plasma physics.

The adiabatic invariant µ is easily broken with large
amplitude waves, even at frequencies well below
the cyclotron frequency.

• Simplest textbook problem: a single electrostatic wave
propagating perpendicular to a constant ~B

Threshold k∆xg = k2eΦ0
mΩ2

c
∼ 1

• Low frequency resonances

• The route to Chaos and heating

• Hamiltonian analysis

• Single large amplitude Alfven wave

• Many mode Spectra

• Solar Corona and NSTX

• Conclusions
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Electrostatic Cyclotron Heating

McChesney, Bellan, Stern – Experiment, PRL 1987
Chen, Lin, White, – Phys Plasmas Nov. 2001

Hamiltonian

H =
(~p− ~A)2

2
+ Φ(x, t)

~B = Bẑ, vector potential ~A = −Byx̂
v̇x = Bvy − ∂xΦ, v̇y = −Bvx − ∂yΦ.

Φ = Φ0cos(kx− ωt).

Dimensionless parameters, cyclotron radius ρ = v/Ωc

• kρ = ratio of cyclotron radius to wave length,
• Nonlinearity parameter is k∆xg = k2eΦ0/mΩ2

c ∼ ω2
b /Ω

2
c

ratio of polarization drift motion to wave length

The equations of motion become
v̇x = vy + kΦ0sin(kx− ωt), vy = −x + x0, giving

d2x

dt2
+ x = x0 + kΦ0sin(kx− ωt)

Let s ≡ k(x− x0) � 1 and 2T = kx0 − ωt
lowest order in s

d2s

dT 2
+

[
4

ω2
− 4k2Φ0

ω2
cos(2T )

]
s =

4k2Φ0

ω2
sin(2T )

Mathieu equation - unstable solutions for ω ' 2/N
Low frequency secularity N � 1
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Poincare section of kρ, ψ = kx− ωt, at vy = 0, v̇y > 0.
k2Φ0 = 0.1, ω = 1/2

Fixed point orbits for k2Φ0 = 0.1, ω = 1/2
At t=0 vy = 0, v̇y > 0, x = x0, ẋ < 0
Guiding center fixed in space, not moving with wave.
Trapping impossible
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Guided by numerical results
Fourier analysis of the fixed point trajectories
consider ω = 1/2 analytically.

Ansatz: x = x0 + λcos(t)− αsin(t)− βsin(ωt)

Using e±icsin(b) =
∑

m Jm(c)e±imb,

−2
dα

dt
cos(t)− 2

dλ

dt
sin(t)− (1− ω2)βsin(ωt) =

kΦ0

∑
jlm

Jj(kλ)Jl(kα)Jm(kβ)sin[(j − l −mω − ω)t]cos[ψ0 + jπ/2]

+kΦ0

∑
jlm

Jj(kλ)Jl(kα)Jm(kβ)cos[(j − l −mω − ω)t]sin[ψ0 + jπ/2]

Integrating over the short time scales

(1− ω2)β = kΦ0

∑
jlm

Jj(kλ)Jl(kα)Jm(kβ)cos(ψ0 + jπ/2)∆ω−

2
dα

dt
= −kΦ0

∑
jlm

Jj(kλ)Jl(kα)Jm(kβ)sin(ψ0 + jπ/2)∆1+

2
dλ

dt
= −kΦ0

∑
jlm

Jj(kλ)Jl(kα)Jm(kβ)cos(ψ0 + jπ/2)∆1+

with ∆ζ± = δj−l+(−m−1)ω,ζ ± δj−l+(−m−1)ω,−ζ .
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For small wave amplitude, k2Φ0 � 1
with C0 = cos(ψ0), S0 = sin(ψ0),
Fa,b(λ, α) =

∑∞
n=−∞(−1)nJ2n+a(kλ)J2n+b(kα)

(1− ω2)β = kΦ0[C0(F0,0 − F0,−1) + S0(F1,0 − F1,1)],

2
dα

dt
= kΦ0J1(kβ)[C0(F1,0 − F1,−1 + F1,2 − F1,1) + S0(F0,−1 − F0,−2 + F0,1 − F0,0)],

2
dλ

dt
= kΦ0J1(kβ)[S0(−F1,0 + F1,−1 + F1,2 − F1,1) +C0(F0,−1 − F0,−2 − F0,1 + F0,0)],

Fixed points of the Poincaré map given by

dλ/dt = dα/dt = 0

0 = −2J1(kα)− J2(kα) + J0(kα), kα = 0.825.

λ = 0, β = −1.62kΦ0.

Fixed points to lowest order independent of Φ0

kρ = k(α− ωβ), ψ = 0
kρ = k(α+ωβ), ψ = π, agree with numerical
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Poincare, k2Φ0 = 0.77, ω = 1/4, Good KAM large kρ

Fixed point orbit, k2Φ0 = 0.77, ω = 1/4
With additional perturbation fixed points change position
But existence is robust.
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Threshold for chaos in the k2Φ0, ω plane.

Extent of “heating” in kρ, k2Φ0 = 0.36, 0.8, 2.6.
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Hamiltonian formalism for low frequency
Follow Lichtenberg and Lieberman

Hamiltonian

H = H0 + Φ0sin(kx− ωt).

Guiding center variables
Transform X = x− ρsinφ, PX → ψ,Pψ

PX = kPψ, ψ = kX − ωt, φ

H = PφΩc − Pψω + Φ0ΣmJm(kρ)sin(ψ +mφ)

variables ψ, φ, Pψ, Pφ

Unperturbed frequencies
ωφ = ∂PφH0 = Ωc, φ ∼ Ωct
ωψ = ∂PψH0 = −ω ψ ∼ −ωt
First order perturbation gives resonances,

secularity of the perturbation when ψ +mφ = constant
ω −mΩc = 0

Standard resonant heating analysis, cyclotron harmonics

But if Φ0 is large, this is incomplete
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Iterate in powers of k2Φ0

Find

H2 = H0 + Φ0ΣmJm(kρ) 〈sin(ψ0 +mφ)〉
+

k2Φ2
0

2 ΣmnJm(kρ)Jn(kρ) 〈sin(2ψ0 +mφ+ nφ)〉
+

k2Φ2
0

2
ΣmnJm(kρ)Jn(kρ) 〈sin(mφ− nφ)〉

Unperturbed frequencies

ωφ = ∂PφH0 = Ωc, φ ∼ Ωct
ωψ = ∂PψH0 = −ω ψ0 ∼ −ωt
H2 terms with m+ n = 1 give secularity at 2ω = Ωc

finite kxg introduces higher harmonics of ω, Nω = ωc

To find the secularities at ω = Ωc/N must perform N
iterations, the Hamiltonian will become very complicated.

Furthermore this is a ω � Ωc approximation

Cannot reproduce ω = Ωc/2 exactly.-
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Alfven wave Heating

Chen, Lin, White, – Phys Plasmas Nov. 2001
magnetic shear- J. Johnson and F. Cheng - AGU 1997

Linearly polarized Alfvèn wave laboratory frame X, Y,Z,
~Bw = Bwŷcos(ψ) with ψ = ~k · ~X − ωt
~B = B0ẑ.

Ions cold in the laboratory frame ω = kzvA = kzv

v = velocity in the wave frame x, y, z with z = Z − vAt.

wave frame : ψ = kxx+kzz and the velocity v = vA = const

Dimensionless kxv, kzv = ω/Ωc, Bw/B0.

Equations of motion

Wave frame d~v/dt = ~v × ( ~B0 + ~Bw)

v̇x = vy − vzBwcosψ, vy = x0 − x, v̇z = vxBwcosψ

d2x

dt2
+ x = x0 − vzBwcosψ.

First order in Bw d2x/dt2 + x = x0 − vz(0)Bwcosψ.

ψ = kxx + kzz and z = vz(0)t

To lowest order the equations are the same as the
electrostatic problem
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ω/Ωc = kzvz(0)/Ωc - Wave frequency in lab frame

kxvz(0)Bw/(B0Ωc) - nonlinearity parameter. (k2Φ0)
related to kxg wave induced curvature drift

For small excursions again find Mathieu equation- unstable
solutions for ω ' 2/N , kx 6= 0.

For small Bw -same resonances as found in the
analysis of electrostatic heating, kx 6= 0.
But to higher order in Bw more complicated

Poincaré section of λ, ψ, - points when vy = 0 and v̇y > 0

Poincaré, Bw = 0.22, kxv = 0.1, kzv = 1.0.
Symmetry, linear polarized wave = left + right.
Chaos produced by Chirikov island overlap
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Left hand circularly polarized Alfven wave.

Wave frame

~Bw = −Bwx̂cos(α)sin(ψ) +Bwŷcosψ +Bwẑsin(α)sin(ψ)

ψ = kxx + kzz

tan(α) = kx/kz.

laboratory frame - wave propagates to positive z.
Ions cold in the lab frame are at vz/v = −1 and v = vA

Poincaré, Bw = 0.25, kxv = 0.16, ω = 0.25.
δBx/B = 0.2, δBy/B = 0.25, δBz/B = 0.13
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Stochastic threshold, (a) ω = 0.5, (b) ω = 0.25, (c) ω = 0.1
Note threshold is at kxvBw ' 0.1, fairly low

E⊥ and E‖ vs t, Bw = 0.25, kxv = 0.27, ω = 0.25.
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Wave Spectrum of many modes

No longer possible to use Poincare plot to examine Chaos

Lyapunov exponent measurement numerically difficult
because of cyclotron orbits

Classical test of adiabaticity of magnetic moment µ
particle passes through a region of field perturbation
emerges with µ(t = −∞) = µ(t = ∞)

Time dependence of field perturbation envelope
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Stochastic heating with amplitude threshold

21 modes, 0.2 < ω < 0.7, average δB/B = 4× 10−3.

21 modes, 0.2 < ω < 0.7, average δB/B = 4× 10−2.
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Spectrum of modes, 0.2 < ω < 0.7,
∆E/E vs δB/B using Gaussian time perturbation
For 1, 5, 21, 51 modes with δB ∼ A/ω and kxvA = 1
Plus spectrum with 21 modes with kxvA = 10

∆E high power in δB above threshold

Threshold dependence on number of modes

Threshold dependence on obliqueness of wave
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Possible Applications

Heating in the Solar Corona

Acceleration region of Solar wind ∼ 3 R�
Heating to a significant fraction of the Alfven speed
Heat in a few hundred cyclotron periods. Mostly E⊥
Preferential heating of heavier mass ions.

Heating by compressional Alfven waves in NSTX

Beam or Alphas → Alfven waves → ions
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Solar Corona, δBk = A/ωk with Eb =< δB2 >
Spectrum given by solar ultraviolet observations-
Cranmer, Field, Kohl – Astrophys. J. 518, 937 (1999)

O+5 heating, .02 < ω/Ωp < .7, .06 < ω/ΩO5 < 2,
51 modes, equal spacing in ω, Eb = 10−3, kxvA = 1

Heating for H+ and O+5, saturation when kxρO+5 ' 1
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NSTX- Toroidal geometry simulation
(Gates, Gorelenkov, White, slab model PRL Nov. 01)

• Mechanism - channelling Fisch, Hermann 1994
• Occurs naturally for Compact Toroidal devices
• Excitation of compressional Alfven waves by super Alfvenic

beam particles. (Gorelenkov Cheng Nucl. Fus. 1995)
• Waves are below ωc because of k‖ Doppler shift.
• Small Landau damping because of large βe.
•Modes grow to threshold for stochastic heating of bulk ions
• Stochastic domain at low energy, beam not affected

• Numerical simulation in toroidal geometry using NSTX
equilibria, Constant mode amplitude, Pitch angle scattering
included with ν = 0.01ωc

Sample Orbit in NSTX
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• The mode spectrum was chosen to match local
analytical analysis and the experimental data.

Eθ = ΣmnsE0(ω)φm(
√

2θ
Θ

)φs(
√

2(r−r0)
∆

)ei(nφ−ωt)

Er = −iωcEθ/ω

∂ ~B/∂t = −∇× ~E

ω = c0 + c1m + c2s + c3n
2/(2m + 1)

• Constants ck geometry dependent given approximately by
cylindrical model but adjusted to match experiment.

Mode Spectrum
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Mode Shape - δBθ/B at θ = 0.
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Energy change at t = 2msec, rms δB/B = 5× 10−4

NSTX heating rate, δB/B = 2×10−4 and δB/B = 5×10−4
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• Possible NSTX ion heating-
Direct channelling of beam energy to heat ions.

• So far only proof of principle demonstration of heating
for a given mode spectrum - need detailed measurements

• Spectrum
modes above ωc lower threshold
mode number matters
Amplitude and shape matter for heating profile

• Energy flow
Beam energy loss
Mode growth rate
stochastic heating rate

• Need self consistent simulation of energy flow
Beam - Waves - Heating

****************************************
NSTX experiments, Wed afternoon

Ronald Bell LI1.002
Eric Fredrickson LI1.003

CAE theory, Friday morning

Nikolai Gorelenkov UP1.042
Elena Belova UP1.003
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Conclusion

• Significant perpendicular heating can be obtained
with a single wave well below the cyclotron frequency.

• Stochastic threshold almost independent of frequency.

• The case of a simple electrostatic wave propagating
perpendicular to ~B provides a textbook example
which displays the general features
common to all large amplitude low frequency waves.

• Nonlinear coupling of guiding center motion at wave
frequency couples to ωc.

• Stochastic threshold much lower for a many-mode spectrum
Modes above ωc assist nonlinear coupling.

• Possible astrophysical applications-
Alfvèn wave heating in the solar corona

• Possible NSTX ion heating-
Direct channelling of beam energy to heat ions.

• Result appears to be of very general nature
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