Collaboration on 3D MHD and Long Pulse Stability Physics and Control in KSTAR

S.A. Sabbagh^{1,2}

for the

KO-US Bilateral Collaboration on KSTAR Research

¹Department of Applied Physics, Columbia University, New York, NY, USA ²Princeton Plasma Physics Laboratory, Princeton, NJ, USA

International Collaboration Discussion Meeting

Recent DOE Proposal Solicitation Defines Scope and Requirements

- "Collaborative Research in MFES on Int'l Facilities"
 - FESAC Report cited, one of the major scientific challenges identified: "Achieving high performance core plasma regimes for long-pulse"
 - Proposals from multi-institutional teams (2 or 3 teams to be chosen)
 - \$6M total/yr (3 years) contested
 - Est. ~ 6 awards to national labs, ~ 8 universities and industry
- Specific topic areas: (from pages 4-5)
 - **Transport**
 - Long Pulse Control (incl. mode stability physics, ELMs, 3D aspects)
 - Plasma Wall Interaction
 - Magnetic Divertor Optimization
 - Auxiliary Systems
 - Topical area "Disruption PAM" (topic #5, pg 2)

Submission Schedule

May 14: Pre-proposals due

May 21: DOE 1st approval

Jun 21: Full proposals due

Some recent history preparing us for this task

- US collaborators have been actively working on KSTAR for more than 5 years
 - Columbia U., GA, ORNL, PPPL, UC Davis, UW, etc.
- Sabbagh appointed by H. Neilson as "PPPL KSTAR Physics Leader"
 - 22 years experience (post Ph.D.) as US collaborator, 5 years experience as funded KSTAR collaborator
 - Columbia U. group: 2 KSTAR papers, 2 IAEA FEC presentations, papers (aiming for 3rd IAEA FEC 2012, 3rd NF paper in prep.), 2 XPs run to date
 - Close ties with NFRI and POSTECH colleagues
 - SAS has established / is carrying out focused PPPL plan for FY2012 to best enable PPPL for KSTAR research
 - Appropriate connections to NFRI colleagues made

- Consolidated at KSTAR Research Conference Feb 2012 (Muju, Korea)
- 7 PPPL team physicists sent to Muju conference largest US presence

Collaboration on 3D MHD and Disruption Control of Steady-State Plasmas

- Addresses key KSTAR Milestones (including)
 - Long-pulse H-mode
 - ELM mitigation
 - Disruption avoidance and associated research (e.g. mode control)
 - Application of results to ITER
- Collaboration Approach
 - Coordinated partnership between institutions aiming at related physics goals
- Organization and Partnerships
 - Task agreement NFRI-PPPL: Columbia U., and POSTECH partners
 - Coupled, complementary research proposal by Columbia University
 - Key research/analysis and diagnostics by POSTECH

KSTAR Goals/Capabilities 2012-16 (TENTATIVE)

Campaign	2012	2013	2014	2015	2016
Operation Time	ʻ12.7 ∼ʻ12.12	'13. 3 <i>~</i> '13. 9	'14.1 <i>~</i> '14.9	'15.7 ∼'15. 12	ʻ16. 7 <i>∼</i> ʻ16. 12
Experimental goals	 H-mode (10 s) Isoflux control ELM mitigation 	 H-mode (20 s) 3-D field physics (RMP) 	 H-mode (50 s) Hybrid scenario Disruption 	 Divertor Physics AT Physics(Bootstrap) Profile control Metal(diverter) RWM 	 Divertor physics Metal wall (PFC/diverter) TBM simulation test
Operation Parameters	• B _T ~3.5 T • I _P > 1 MA • t _P > 10 s • Ti ~ 3 keV	• B _T ~ 3.5 T • I _P > 1 MA • t _P > 20 s • Ti ~ 3 keV	• $B_T \sim 3.5 \text{ T}$ • $I_P > 1 \text{ MA}$ • $t_P > 50 \text{ s}$ • $Ti \sim 5 \text{ keV}$ • $\beta_N \sim 1 \text{ at } 3T$ • $f_{BS} \sim 0.3$	• $B_T \sim 3.5 \text{ T}$ • $I_P \sim 2 \text{ MA}$ • $t_P > 50 \text{ s}$ • Ti > 5 keV • $\beta_N \sim 1.65 \text{ at } 3\text{T}$ • $f_{BS} > 0.5$	• $B_T :\sim 3.5 T$ • $I_P \sim 2 MA$ • $t_P > 50 s$ • $Ti > 5 keV$ • $\beta_N \sim 1.86 at 3T$ • $f_{BS} > 0.5$
Heating & Current Drive	 NBI : 3.5MW ECH(84/110G):0.5MW ECCD(170G): 1MW ICRH : 1.5MW LHCD(5G) : 0.3MW 	 NBI : 3.5MW ECH(84/110G):0.5MW ECCD(170G): 1MW ICRH : 1.5MW LHCD : 0.5MW 	 NBI : 4 MW LHCD : 1 MW ECH(84/110G):0.5MW ECCD(170G): 1 MW ICRH : 1.5MW 	 NBI : 6 MW LHCD : 2 MW ECCD(170G): 2MW ICRH : 1.5MW 	 NBI : 8 MW LHCD : 2 MW ECCD(170G): 2MW ICRH : 1.5MW
Diagnostics	 MIR / 2nd ECE-I Thomson (100Hz, 5J) Reflecto. / FIR (1ch) IRTV (Div.) / BES Image Bolometer 	• MSE • Li-beam /DBS • Thomson(25ch)	 CES (poloidal) Thomson(40 ch) XICS(upgrade) 	 Thomson (Div.) Bolometer (Div.) 	Neutron profile VUV
Magnetic Control	• TF : 3.5T, PF : 6 Wb • IVC, RMP • Grid : 100 MVA	• TF : 3.5T, PF : 10 Wb • IVC, RMP,IRC • Grid+MG : 200 MVA	• TF : 3.5T, PF : 10 Wb • IVC, RMP,IRC • Grid+MG : 200 MVA	• TF : 3.5T, PF : 10 Wb • IVC, RMP,IRC, RWM • Grid+MG : 200 MVA	• TF : 3.5T, PF : 10 Wb • IVC, RMP,IRC, RWM • Grid+MG : 200 MVA
PWI	 Cryo pump(temperal) PFC 	 Cryo pump(normal) PFC water cooling 		+Diverter upgrade +Pellet injector +Radiative divertor	Muju
Hardware		• Cryo pump(기간) • PFC water cooling	+klystron(delivery) NB ion source	W-diverter NB PS	OFF axis NB(2MW)
- K 🔍 T					

KSTAR Goals/Capabilities 2012-16 (TENTATIVE)

Campaign	2012	2013	2014	2015	2016
Operation Time	'12. 7 '1 2. 12	'13. 3 <i>~</i> '13. 9	'14.1 <i>~</i> '14.9	'15.7 ~'15. 12	ʻ16.7 ~ʻ16.12
Experimental goals	H-mode (10 s) Isoflux control ELM mitigation	• H-mode (20 s) • 3-D field physics (RMP)	H-mode (50 s) Hybrid scenario Disruption	 Divertor Physics AT Physics(Bootstrap) Profile control Metal(diverter) BWM 	 Divertor physics Metal wall (PFC/diverter) TBM simulation test
Operation Parameters	• B _T ~3.5 T • I _P > 1 MA • t _P > 10 s • Ti ~ 3 keV	• B _T ~ 3.5 1 • I _P > 1 MA • t _P > 20 s • Ti ~ 3 keV		• $B_T \sim 3.5 \text{ T}$ • $I_P \sim 2 \text{ MA}$ • $t_P > 50 \text{ s}$ • Ti > 5 keV • $\beta_N \sim 1.65 \text{ at } 3\text{T}$ • $f_{BS} > 0.5$	• $B_T :~ 3.5 T$ • $I_P ~ 2 MA$ • $t_P > 50 s$ • $Ti > 5 keV$ • $\beta_N ~ 1.86 at 3T$ • $f_{BS} > 0.5$
Heating & Current Drive	 NBI : 3.5MW ECH(84/110G):0.5MW ECCD(170G): 1MW ICRH : 1.5MW LHCD(5G) : 0.3MW 	 NBI : 3.5MW ECH(84/110G):0.5MW ECCD(170G): 1MW ICRH : 1.5MW LHCD : 0.5MW 	 NBI : 4 MW LHCD : 1 MW ECH(84/110G):0.5MW ECCD(170G): 1 MW ICRH : 1.5MW 	 NBI : 6 MW LHCD : 2 MW ECCD(170G): 2MW ICRH : 1.5MW 	 NBI : 8 MW LHCD : 2 MW ECCD(170G): 2MW ICRH : 1.5MW
Diagnostics	 MIR / 2nd ECE-I Thomson (100Hz, 5J) Reflecto. / FIR (1ch) IRTV (Div.) / BES Image Bolometer 	• MSE • Li-beam /DBS • Thomson(25ch)	 CES (poloidal) Thomson(40 ch) XICS(upgrade) 	 Thomson (Div.) Bolometer (Div.) 	Neutron profile VUV
Magnetic Control	• TF : 3.5T, PF : 6 Wb • IVC, RMP • Grid : 100 MVA	• TF : 3.5T, PF : 10 Wb • IVC, RMP,IRC • Grid+MG : 200 MVA	• TF : 3.5T, PF : 10 Wb • IVC, RMP,IRC • Grid+MG : 200 MVA	• TF : 3.5T, PF : 10 Wb • IVC, RMP,IRC, RWM • Grid+MG : 200 MVA	• TF : 3.5T, PF : 10 Wb • IVC, RMP,IRC, RWM • Grid+MG : 200 MVA
PWI	 Cryo pump(temperal) PFC 	 Cryo pump(normal) PFC water cooling 		+Diverter upgrade +Pellet injector +Radiative divertor	Muju
Hardware		• Cryo pump(기간) • PFC water cooling	+klystron(delivery) NB ion source	W-diverter NB PS	OFF axis NB(2MW)
- K 🔩 T					

Focus on MHD stability and transport aspects to help fulfill KSTAR milestones

• Overview of Research

- Characterize beta and pulse-limiting instabilities impeding long pulse H-mode
 - Assess error field and optimize correction for long-pulse
 - Evaluation of NTM, RWM, and kink/ballooning modes at high β_N , long pulse
 - Plasma startup/control improvements and NBI support enabling pulse extension
- Assess ELM mitigation including plasma response in long pulse H-mode
- Alter plasma rotation by 3D fields and assess access to ITER-relevant regime
- Assess approach to mode stability boundaries and active mode control under long-pulse profile evolution
- Generate transport analysis to understand profile evolution/influence of 3D field

• Comments

- KSTAR/NSTX synergy: large difference in aspect ratio gives best opportunity to understand and test underlying physics by comparing results
- Near-term program plan tasks (FY12-13) need completion to ensure basic operational, diagnostic, analysis capabilities to support longer-term goals

<u>Multi-staged approach: First establish modes/profiles;</u> then move to mode avoidance/control research

- Diagnostic/analysis support, etc. (2012-13)
 - Thomson scattering (LeBlanc): Connection made to Jonga Lee
 - CXS (Grierson): Connection made to Wonha Ko
 - TRANSP (Budny/Sabbagh): Connection to Jinyong Kim / L. Terzolo
 - Efficient data transfer/access (Carroll): Connection made to M. Park
 - XRC (Hill/Bitter): Existing connection with Sang Gon Lee
 - NBI (Grisham): Existing connection with Y.S. Bae
 - PPPL Theory: (CS Chang): Existing connection with G.Y. Park
- Further support/upgrades/needs identified (2012-13)
 - Power systems (Ramakrishnam)
 - Magnetic diagnostics (Sabbagh)
 - Upgraded error field/control sensors: Connection made to J.G. Bak Muju

<u>Multi-staged approach: First establish modes/profiles;</u> then move to mode avoidance/control research

- Mode Characterization / analysis / control needs (2012-2014)
 - Startup/equilibrium control (Mueller/Kolemen)
 - Optimization of real-time plasma control and startup, isoflux control
 - Definition of needs for control (Sabbagh/HK Park/JK Park/YS Park/Kolemen)
 - Design / support implementation of diagnostic upgrades needed for control
 - Rotation alteration (ITER relevance/stability): (Sabbagh/YS Park)
 - Scenario / transport modeling: (J Menard, C.S. Chang, et al.)

ELM Mitigation (2012-)

- ELM mitigation and intensification analysis vs. applied field configuration, phase; examination of threshold conditions (JK Park)
- ELM control analysis by theoretically optimizing magnetic configurations (enabled by patch panel) and available profile modification (JK Park)
- Mode and Error field Control (2013-2016)
 - Definition of dynamic error field spectrum and methods to minimize (JK Park)
 - Mode stabilization and control (Sabbagh/YS Park/Hosea/Ellis)
- Associated experiments: JK Park, YS Park, Sabbagh, Mueller Muju

POSTECH Program (from H.K. Park)

- New/advanced approach for understanding H-mode physics and ELM dynamics
 - New approach to understand H-mode related transport physics 2-D MIR/3-D ECEI/ 2-D BES
 - Role of recycling and contact points of divertor/limiter in L-H transition
 - Role of in-out flux of energy flux and particles in confinement
 - New approach to understand ELM physics and study first principle based mitigation/suppression methods using 3-D visualization and 2-D active control
 - Coupling to PPPL/Columbia U. work on mode stability/control
- Present KSTAR results/analysis motivate our plan
 - Recent visualization of ELM structures growth rate, saturation and burst
 - Recent visualization of the RMP assisted suppression and mitigation of ELMs mode structure change, etc.

Analysis begins with existing data, reconstructions,

models; advances to long-pulse, high β_N experiments

3D Physics and Stability

- □ IPEC (JK Park): ELM mitigation, error field with plasma response
- TRIP3D, SURFMN (YS Park): ELM mitigation
- MISK/DCON (Berkery/Sabbagh): Kinetic RWM stability analysis
- NTM analysis (YS Park/Sabbagh)
- NTV analysis (Sabbagh/JK Park/YS Park)
- KSTAR EFIT reconstructions/development (Sabbagh/YS Park)
- XGC/M3D-C1: 3D field penetration and ELM analysis (CS Chang/Jardin)

Scenarios and Transport

- TRANSP (Budny, et al.): Shot modeling and development
- TSC/TRANSP (Menard, et al.): Scenario development, including fully non-inductive, with comparison to NSTX-U
- Subscription XGC codes (C.S. Chang): Kinetic G.C. / turbulence transport (3D field effects)

Control

- VALEN (Bialek/YS Park): RWM / dynamic error field control analysis
- IPEC (JK Park): Dynamic error field reduction
- RWMSC (Sabbagh/YS Park): State-space RWM analysis / feedback control
- Startup/equilibrium control analysis, rtEFIT (Kolemen/Mueller)

<u>The PPPL/Columbia/POSTECH Collaboration on KSTAR aims</u> <u>to address/support several key device milestones</u>

- Addresses key KSTAR Milestones (including)
 - Long-pulse H-mode
 - ELM mitigation
 - Disruption avoidance and associated research (e.g. mode control)
 - Application of results to ITER

• US components of this plan are dependent on funding

Good publication progress: two published Nuclear Fusion papers, three IAEA FEC presentations, one PRL, one co-authored PRL submission, one APS invited, eight RSI/JINST (POSTECH)

• NFRI support is critical for this funding to be maintained

- Continued, close discussion with NFRI management is needed to create the best research for KSTAR and to meet collaborative goals
 - Favorable response by NFRI to date
- US funding will be strongly related to fulfillment of DOE fusion goals

Proposal: physics research list and team building Approach Maintain strong coupling to US facility: NSTX (+DIII-D if GA joins) Address hosts' needs: NFRI has endorsed the present program Research (3D physics and long pulse control) Incl new PPPL PD/hire Stability physics of long pulse H-mode Couple ORNL? (Wed 2pm TM, RWM, +internal mode, ECEI, future control meeting scheduled) Couple GA 3D (Evans)? ELM mitigation / control (contacted) Long pulse scenario modeling Couple GA control ? (contacted) Stability control of long pulse H-mode **Disruption avoidance** Couple theory outside Rotation alteration physics (NTV, ECH, etc.) < PPPL (UT Austin) MHD, ECH induced V_{ϕ} , etc. Rotation control ECH/NTV actuators, NFRI endorsed, incl. new CU PD (contact made) Present budget est: \$1.7M/yr for this activity w/o GA, ORNL Expands originally planned PPPL FY13-14 program

Includes ECH support ~\$200k but not SS ECH launcher (\$1.7M)

Further Research Ideas - Discussion

- Some Potential Research Additions / Expansion
 - Transport
 - US collaboration/leadership opportunities in diagnostics and theory
 Fast ion diagnostics a possible niche
 - PPPL has strong transport research presence (NSTX)
 - Interest from Diallo? Other NSTX contributors?
 - G. McKee (UW) expressed KSTAR BES plans at Muju
 - Disruption mitigation
 - KSTAR will need new capabilities to address this, but might do so in out years
 - Auxiliary systems (actually, included as present research)
 - PPPL strong here (e.g. proposed steady-state launchers) present thought is that this funding falls under separate proposal w/MIT
 - Continue to ramp-up coordinated physics program utilizing this hardware
- Continue further discussion, send suggested ideas

But quickly – time is tight. Contact: <u>sabbagh@pppl.gov</u>

EXISTAR Discussion on "3D Control for Long Pulse" proposal + KO-US Meeting talk (Muju, Feb 2012) - S.A. Sabbagh, et al. (4/23/12) 15