Visit PPPL to discuss on SPA Power Supply and its Interfaces, Apr. 21-23, 2014, PPPL, NJ, USA

Progress of KSTAR Operation and Upgrade

Yeong-Kook Oh

On behalf of

KSTAR project participants and collaborators

Apr. 22nd, 2014 National Fusion Research Institute

ykoh@nfri.re.kr

New NFRI Head Quarter was ready for the KSTAR science, ITER-DA and DEMO research

NFRI Campus

KSTAR program approached to public..

Hollywood Movie Fusion energy for Aviation & Explosive

Korean Movie ("AM 11:00") KSTAR for massive energy in Time Machine

KSTAR progress and upgrade – ykoh @ Apr. 2014

2013.11.28

Strong contributions from PPPL (including Columbia U. and ORNL) to KSTAR program

Human resource developments

✓ PPPL staffs moved to Korea : H. Park, TS Hahm, KC Lee, etc.

- Participating the KSTAR experiments: D. Mueller, S. Sabbagh, J. Park, J. Ahn, Y. Park, CS Chang, R. Ellis, J. Hosea, L. Grisham, J. Menard, etc.
- ✓ Ph.D or post-doctorial courses : YS Hwang, W. Choe, W. Lee, JH. Kim, K. Kim, etc.
- ✓ Short or long-term visiting researchers (Sabbatical or short-term) : YK Oh, BH Park, etc.

- KSTAR Overview
- Key Achievements
- Research Plans and Upgrade
- Remarks

KSTAR Mission and Design Parameters

• KSTAR Missions are

- To achieve the superconducting tokamak construction and operation experiences
- To explore the physics and technologies of high performance steady-state operation that are essential for ITER and fusion reactor

• KSTAR parameters

Parameters	Designed	Achieved
Major radius, R _o	1.8 m	1.8 m
Minor radius, a	0.5 m	0.5 m
Elongation, ĸ	2.0	1.8
Triangularity, δ	0.8	0.8
Plasma shape	DN, SN	DN, SN
Plasma current, I _P	2.0 MA	1.0 MA
Toroidal field, B ₀	3.5 T	3.5 T
Pulse length	300 s	22 s
β _N	5.0	2.9
Superconductor	Nb₃Sn, NbTi	Nb₃Sn, NbTi
Heating /CD	~ 28 MW	~ 5 MW
PFC	C, CFC or W	С

 Machine design is optimized for advanced target operation with strong shaping, passive plates, low TF ripple, ...

Brief history of KSTAR operation

- 2008 : First plasma achievement Ip >100 kA, B_T ~1.5 T, 84GHz ECH
- 2010 : First H-mode achievement Ip ~0.6 MA, P_{NBI}~1 MW
- 2011: Successful ELM suppression @ n=1
 1 MA discharge (L-mode)

• 2012 : Stationary H-mode (~16s @ 0.6 MA) Surpass n=1 ideal no-wall limit $(\beta_N \sim 2.9, \beta_N / li \sim 4.1)$

• 2013 : Error field measurement (~10⁻⁵) Stationary H-mode (~20s @ 0.5 MA)

First Plasma (2008)

H-mode Plasma

 Long-pulse discharges & ITER urgent issues were main thrusts in the KSTAR 2013 campaign.

Machine status of KSTAR (2013)

In-vessel Control Coils (Vertical stabilization & ELM control are ready. Broadband power supply is planned from 2015.)

Full Graphite PFCs (Water cooling pipe was installed. Active cooling is planned from 2016.)

Ad-hoc In-vessel Cryopump (Cryo-cooling tube was installed. Liquid Helium circulation is planned from 2016.)

• Key Achievements

- Long-pulse H-mode operation
- Extension of operation boundary
- ELM control & H-mode physics
- MHD/Transport Physics
- Research Plan and Upgrade
- Remarks

- Extension of long-pulse capability and operation boundary Pulse-length (>20 s) /plasma current (~ 1 MA) Stability diagram (higher betaN, lower li)
- ELM control in wider operational range n=1 & n=2 magnetic perturbation (wider q95 window) Update of ECH/SMBI induced ELM control
- H-mode physics
 - L-H transition ELM filament imaging (LFS-HFS)
- MHD / transport related physics

Rotation damping by ECH Soft-landing scheme for Disruption/Lock-mode Control of NTM / Sawtooth Fast ion transport during ELM suppression

Typical H-mode plasma discharge in KSTAR

• Control of plasma discharge :

- Balanced DN, USN, LSN
- Shaping : κ~ 1.8, δ ~ 0.6
- Heating : $P_{NBI} \ge 3 \text{ MW}, P_{ECH} \sim 1 \text{ MW}$
- PFC : graphite tiles (no active cooling)
- WC : Boronization and overnight GDC

• H-mode plasma

- LH transition threshold ~ 1 MW
- Density roll over : ~ 2 x10¹⁹/m³
- H89 : 1.5 ~ 2.0
- Strong rotation ~ 300 km/s
- Stored energy : 0.4 ~ 0.6 MJ
- ELM types : Type-I ($f_{ELM} \propto P_{ext}$),Type-III

Effort for long-pulse operation : Longer phase of H-mode flattop (t_{H-mode}~20s)

• Operation parameters

- Ip = 0.5 MA (B_T = 2 T, q95 ~ 6.4)
- $P_{NBI} \sim 2.5 \text{ MW}$
- P_{ECH} @ 110 GHz, X2 ~ 250 kW,
- P_{ECCD} @170 GHz, X2 ~ 700 kW
- Extended H-mode flattop up to 20s
- Better shape control without strong n_e rise (due to better X-point control)
- Shut-down at t=21.4s due to limit of electricity of grid (< 73 MVar limit), not due to Vs limit.

• Plan for longer pulse

 Ohmic flux (~ 12 Wb) is available for more than 50s flattop at Ip=1 MA, even with P_{NBI} ~ 3 MW, if motor-generator(1.6 GJ, 200 MVA) is in operation.

KSTAR is approaching and exceeding no-wall MHD stability limit by optimizing scenario

S. Sabbagh & Y. Park

🖆 Columbia University

- KSTAR equilibrium operating space has been extended to advanced operation range
 - By early heating for low li (better lp ramp-up scenario)
 - Optimizing B_T & Ip
 B_T in range 1.3 1.5T
 - lp : 0.5 ~ 0.7 MA
 - $\beta_N / I_i \sim 4.1$
 - $\beta_N \sim 2.9$, $l_i \sim 0.7$
 - We expect more advanced results from 2014.
 - NBI heating increased in 2014
 - broadband IVCC power supplies from 2015.

- 14 -

1.1

0.5

#9286

6.0kAt FEC

Suppression

7

ITER high priority research; ELM suppression by n=1 and n=2 perturbation

- ELM suppression over 4s by n=1 RMP
- Unique result in KSTAR and it could be related to low intrinsic error field.
- $q_{95} = 6.0 \sim 6.5$

- ELM mitigation / suppression by n=2 RMP.
- It depends on selective setup (top/bottom or top/mid/bot)
- $q_{95} \sim 4.0$

ITER high priority research ; Stimulated L/H transition using SMBI

Lower n_e branch (ne < 2.e19) + small SMBI (4 ms):

various dynamics are triggered as

- Extension of LCO
- Enhancement of density pedestal
- Transition is often delayed in time
- Steepening of edge density found

Higher n_e branch + stronger SMBI (8 ms):

- Stimulated L-H occurs with increase of density toward which the transition is more unlikely to occur
- Reduction of required absorbed power = Pinj dW/dt – Prad has been reported, up to 30% less than baseline
- The profile change seems to be localized in space, according to spatial BES profile

ITER high priority research ; Stimulated L/H transition using SMBI

- Lower n_e branch :
- Injection of 4 ms SMBI at 2.4s makes larger oscillations at Dα, extends the Iphase and causing L-H at 2.8s

- Higher n_e branch :
- stimulated transition found with 30% reduced absorbed power

Demonstration of successful soft-landing at the Locked-mode with slow SC coils

- Lock-mode trigger : n=1 magnetic perturbation
- Detection : PCS catches drop of Ip (despite of its control effort)
- Action : PCS invokes async. ramp-down procedure for safe discharge termination

KSTAR shot: [9075] at 2013/08/16 10:08:30

Effective tools for mixed error field perturbation experiments

- In-vessel control coils are powerful tools for studying the effect of overlapped nonaxisymmetric field with difference modes.
 - n=1 field is gradually increased to cause the final locking.
 - n=2 even field is constantly applied during n=1 field increase.
 - The early trigger of Mode-lock as the current In=2 increases.
 - However, final disruption is delayed as In=2 increased.

- KSTAR Overview
- Key Achievements
- Research Plans
 - Long-term plan of operation and upgrade
 - Research directions in Phase 2
 - Hardware upgrade in 2014
 - Research plan in 2013
- Remarks

Long-term plan of operational and hardware upgrade

Operation Phase I 2008 ~ 2012	Operation Phase II 2013 ~ 2017	Operation Phase III 2018 ~ 2022	Operation Phase IV 2023 ~
Superconducting Tokamak Operation	Long-pulse H-mode and ITER pilot	High-performance Scenario related to DEMO	DEMO Advanced Technology
 Integrated control of SC tokamak First plasma H-mode discharge Experimental collaboration 	 ITER priority research (ELM, Disruption, NTM) High performance plasma study using KSTAR intrinsic tools (intermediate heating power, low density) 	 Demonstrate advanced operation scenario (high power, high density) Integrated control of profile and stability DEMO compatible scenario development 	 Stabilization and optimization of advanced scenario Components test under extreme environments
Upgrade Plan	 Heating : upgrade to 13MW NBI ~ 6MW ECH ~ 3MW PFC : graphite & strengthen Density control: cryopump & PFC active cooling 3D field : IVCC PS upgrade Electric : MG Control & diagnostics 	 Heating : upgrade to 28 MW NBI ~ 12 MW ECH ~ 4 MW LHCD ~ 4 MW ICRF or Helicon CD ~ 8 MW PFC : Metal PFC & advanced divertor Density control : pellet Electric : 5 T capability 	Black : already featured Blue : under upgrade Red : planned upgrade

Major research topics in 2nd operation phase

- 1. Exploration of ITER operational range based on long-pulse H-mode in MA level
- 2. Optimization of heat-load on plasma facing components
- 3. Realization of real-time plasma control in long-pulse discharges
- 4. Extension of advanced operation modes to reactor relevant conditions

	2014	2015	2016	2017
Long-pulse ITER Operation	Experiments on long-pulse ITER baseline scenario optima with lin	$\beta_N \sim 2$ for 30s al operation $\beta_N \sim 2$ for mitations of SC PF coils	50s β _N > 2.5 for 50	s free
Heatloads on Dirvetor/Firstwall	Control of ELMs(RMP) Pre-cursor detection for disruptions High-Z impu	> 10s Radiative divertor in long-pulse urity transport	Experiments on optimal divertor sh	apes W firstwall(?)
Realtime Control & Diagnostics	Integrated ELM control Control of n _e /T _e profile	NTM control Integration of s plasma current	F Fully ir profile in long	RWM control ntegrated PCS -pulse operation
Advanced operation modes	Quiesce H-mode	ent e Te~Ti expe	mode in long-pulse and eriments v	d SS mode T~0 experiments

Many strong points of KSTAR for advanced research capabilities

- Robust machine integrity and reliability of long-pulse SC magnet
 operation is demonstrated
- Low error field, TF ripple and hence strong rotation : ideal for rotation study and low q95 operation
- Low intrinsic error field : ideal for magnetic perturbation study and MHD stability
- Versatile in-vessel coils and power supplies for multi-purpose : flexible system for ELM/RWM/EF control
- Similar magnetic/vessel system as ITER
- Optimized for advanced operation scenario : equipped with passive plates, in-vessel coils and capable of strong shaping
- Advanced diagnostics : ECEI, MIR, BES, Li-Zeeman and TS
- Mix of various heating technologies: tangential NBI, ECH/ECCD, LHCD, ICRF

Very low toroidal ripple as an effective environment for the pedestal study

• KSTAR features :

- Very low TF ripple at edge (~0.05%) by locating the plasma at inboard
 - JET (~ 0.08 %, at 32 coils)
 - DIII-D (~ 0.5 %), ITER (0.5 ~ 1 %)
 - KSTAR (~0.05 %)
- Clear detection of pedestal rotation profile

Research capability :

- Accurate inspection and control capability of pedestal profile
- Research at higher rotation
- MHD research at extreme operation (ex, min. q95 operation, high rotation)
- Upgrade :
 - Diagnostics upgrade: MSE, Li-Zeeman splitting, p-CES, TS

KSTAR plasma position and low TF ripple

Machine	(%) at edge	
JET	0.08 (32 coils) ~ 1.5 (16 coils)	
DIII-D	0.5	
JT-60U	0.5 ~ 1	
ITER	0.5 ~ 1	
KSTAR	0.05	

Density pedestal

2.25

Radius (m

2.35

2.30

6163

2.61673 2.61709

2.61749

2.6178

Very low intrinsic error field and effective stability research

• KSTAR features :

 Low intrinsic error field (δB/B ~ 10⁻⁵) was measured, it is about one order of magnitude low er than others

Research capability:

- Explore the relation of ELM suppression at n=1 with low n=1 intrinsic error field.
- Compare the confinement database according to error field variation by using in-vessel control coils for error field source
- MHD research according to error field at high beta or high beta/low li region.

KSTAR error field measurement

Plasma internal inductance (I_i)

Plan of 2014 campaign

- Goals of experiments in 2014(tentative)
 - Schedule for plasma experiments : 10 Sep 15 Nov
 - Extended H-mode plasma : Longer (30s at 0.5 MA) and higher current (~1 MA)
 - P_{NBI} ~5 MW, co-/cntr- ECCD (1MW) with β_p & better gap control
 - Long-pulse sustainment/scenario for RMP ELM suppression (~10 sec)
 - Commissioning of 200 MVA Motor Generator
 - Identification of intrinsic error field & its impact on machine performance (lower q95, extended operation in Hugill diagram at low ne & q95)

• 2014 Experimental campaign

• In-vessel Components

- Passive stabilizer modification (2014)
- Preparing the active cooling of PFC (2016)
- Preparing the in-vessel cryopump operation (2016)
- Preparing the pellet injector

• Magnetics

- TF magnet slow/fast discharge dump resisters (2014)
- Motor-generator (2014)
- IVCC power supply (2015)

• Control

- Network connection (full tunneling VPN) (2014)
- Additional control room (2015)
- Heating & CD
 - Additional ion source for NB (~ 6 MW max) (2014) & NBI-2 design
 - Coupling of ICRF, LHCD (2014)
 - New 105/140 GHz ECH/CD (2015)

• Diagnostics

- Thomson (channel increase),
- W impurity transport (2014)
- MSE (2015)
- P-CES, Li-Zeeman (2015)

Modification of Passive Stabilizer to enhance the structural rigidity

- Modification in passive stabilizer in 2014
 - In the previous design, bottom passive stabilizer is weak against lateral force due to asymmetric forces due to VDE or halo current.
 - There were some damages in PFC tiles and mechanical connectors in bottom passive stabilizer.
 - Modification : Separate supporting of bottom PS using additional supporters and removal of mechanical bridges.
- Major upgrade of in-vessel structures are also considering.
 - Advanced divertor for high heat flux handling.

Versatile in-vessel control coil and effective for the magnetic field perturbation study

• Extended operation of IVCC

- Research on the error field effects under n=1, 2, with 3 poloidal layers of control coils.
- Dynamic ELM control, rotation control, error field effect, RWM control, ..
- Power supplies
 - 5 sets of Broadband SPAs (500 V, dual 2.5 kA or single 5 kA, dc ~ 10 kHz switching)
 - Switching panel for convenient mode change between shots
 - Operation from 2015 campaign.

Complex in-vessel control coils

RWM Power Supply : 2.5kA Parallel 5kA 1set

Newly installed motor generator for larger flux operation in PF magnets

KSTAR

Upgrade in NBI heating & ECH systems

NBI-1 beam trajectory with 3 ion sources and pre-concept of NBI-2 system

- So far, NBI-1 system with 2 ion sources operated reliably.
- In 2014, NBI-1 system will be operated with 3 ion sources (~ 6 MW, 100 keV).
- NBI-2 is under consideration with off-axis beam injection capability. with vertical offset of 30 ~ 40cm and considering co-and counter injection

Beam trajectories of NBI-1 with 3 ion sources

Domestic collaboration

- Operation scenario development (SNU)
- Impurity transport physics using tomography SXR and W-injection system (KAIST)
- Density fluctuation and temperature fluctuation using ECEI and MIR (POSTECH/UNIST/UCD)

International collaboration

- 110 GHz ECH for startup (GA)
- Steady state ECH launcher development (PPPL)
- ICRF heating and SS technology (PPPL)
- LHCD physics (CEA-IRFM & MIT)
- LH PAM launcher design and HXR camera (CEA-IRFM)
- 170GHz/1MW CW gyrotron & NBI steady state ion source development (JAEA)
- H-alpha Filter Scope (ORNL), ECEI & MIR (UCD)
- Thomson Scattering (JAEA & NIFS)
- ECE, p-CES, Bolometer (NIFS)
- Li-beam source and BES (Wigner RCP in Hungary)
- XICS (PPPL, ASIPP, HUST)
- Image MSE & CI (ANU)
- PCS (GA, PPPL)
- Others

- KSTAR has been operated for 6 years since the first plasma in 2008.
 - Reliable operation in H-mode enabled the ITER high priority research including ELM suppression in the range of 0.6 MA.
 - There are lots of contributions from domestic and international collaborators in design and developments of the key components and joint experiments.
- KSTAR will be upgraded and operated to support the advanced research which are essential for ITER operation and DEMO design.
 - Plasma operation in KSTAR will be extended longer pulse up to 50 s and higher current over 1 MA in Phase 2.
 - Some uniqueness in KSTAR could be a good potential in exploring new operation regime using low error field, low ripple, in-vessel control coils with 3 layer in poloidal, and advanced diagnostics.
 - Strengthened collaboration and contribution form the international partners are essential and will be appreciated for exploring the breakthrough for the next fusion reactors.

Thank you for your attention !

에너지강국

바닷물로 만드는 **하** 핵융합에너지가 에너지 문제 해결의 <mark>답</mark>입니다

태양에너지의 원리인 핵융합은 바닷물을 연료로 하는 안전한 미래에너지원입니다 국가핵융합연구소는 핵융합에너지 개발로 에너지문제의 궁극적인 답을 찾습니다