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We illustrate the capabilities of a recently developed two-dimensional full wave code (FW2D)
in space and tokamak plasmas by adopting various values of density, magnetic field configuration
and strength as well as boundary shape. As example, we first showed fast compressional wave
propagation in the inner magnetosphere is dramatically modified by a plasmaspheric plume at
Earth’s magnetosphere. The results show that wave energy is trapped in the plume showing a
leaky eigenmode-like structure with plume, which is similar to the detected magnetosonic waves.
We also performed simulations of high harmonic fast waves in the scrape-o↵ layer (SOL) plasmas
of the National Spherical Torus eXperiment (NSTX)/NSTX-Upgrade. Comparison the results with
previous full-wave simulations show that although the FW2D code uses a cold plasma approximation,
the electric field and the fraction of the power losses in the SOL plasmas show excellent consistency
and agreement with the previous full wave simulations performed by the AORSA code.

PACS numbers: 52.25.Os, 52.35.Hr, 52.50.Qt, 94.30.cv, 94.30.Tz

I. INTRODUCTION

In the solar system, many planets and their moons are
magnetized and interaction of the solar wind with plane-
tary magnetospheres leads to the formation of large scale
field-aligned currents along with various electrostatic and
electromagnetic waves.

There are many numerical e↵orts to understand
plasma waves in planetary magnetospheres. Many mod-
els in the magnetosphere are based on WKB-based meth-
ods [e.g., 1, 2]. While these models can follow the flow of
energy due to a particular excited wave, this approach is
invalid for wave mode conversion or tunneling e↵ects. On
the other hand, a time-dependent fluid wave model has
been used for waves in a wide range of frequencies [e.g.,
3, 4]. Although they successfully demonstrated magne-
tospheric wave phenomena including mode conversion,
the magnetic field curvature e↵ect could not be captured
because they adopted slab geometry. Hybrid wave simu-
lation codes [e.g., 5, 6] and MHD fluid wave codes [e.g.,
7] have also been used, however, they are numerically ex-
pensive or can only be used for limited frequency range.

A two-dimensional full-wave code, so-called FW2D,
has been developed [8] to overcome those shortcomings.
This wave code solves cold-plasma wave equations using
the finite element method and an unstructured triangu-
lar mesh. It can easily describe wave propagation, mode
coupling for arbitrary plasma by adopting various mag-
netic field configurations and geometries. Furthermore,
a cold plasma approximation is useful to determine wave
behavior in space as shown in previous simulations [e.g.,
7], thus the model is well suited to address key science
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questions regarding the spatial distribution, frequency,
and polarization of the various wave modes in space.

For instance, the FW2D code has been used to describe
low frequency waves in Earth and Mercury’s multi-ion
magnetospheres [8–10]. The results include the genera-
tion and propagation of externally driven ultra-low fre-
quency waves via mode conversion at the ion-ion hybrid
resonance in Mercury and Earth’s magnetospheres [8, 10]
and mode coupling, refraction and reflection of internally
driven field-aligned propagating left-handed EMIC waves
at Earth [9].

More recently, the FW2D code has also been success-
fully adopted to tokamak geometry [10] to examine waves
in the scrape-o↵ layer (SOL) in the region of the plasma
between the last closed flux surface (LCFS) and the toka-
mak vessel. This code is ideal for waves in the SOL
plasma, because realistic boundary shapes and arbitrary
density profiles can be adopted in the code and the SOL
plasma can be approximated as a cold plasma.

Understanding of the interaction between radio fre-
quency (RF) antennas and the SOL plasma is crucial
because significant fractions of the coupled power can be
absorbed in the SOL instead of the core plasma as de-
sired. In particular, recent experimental studies employ-
ing high harmonic fast wave (HHFW) heating on the Na-
tional Spherical Torus eXperiment (NSTX) [11, 12] has
shown that substantial HHFW power loss (up to 60% of
the power coupled from the antenna) can occur along the
open field line in the SOL [13–17].

Many numerical simulations examine RF waves in
tokamak by adopting a simulation domain that contains
the SOL and plasma core [18–23]. Using AORSA (All
order spectral algorithm) [24] code, Ref. [19, 20] par-
ticularly showed that power losses in the SOL start to
increase significantly, commensurate with the amplitude
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of the RF field, when evanescent waves begin propagating
in the SOL due to higher density in front of the antenna.
Their results showed a good consistency with NSTX ex-
periments [13, 14] although they assumed rectangular
vessel shape.

In this paper, we illustrate the capabilities of the
FW2D code. In addition to previous examples of waves
in space plasmas [8–10], we demonstrate trapping of
fast compressional waves power in plasmaspheric plume
structures. We also examine HHFW in the SOL of NSTX
and NSTX-Upgrade (NSTX-U) [25] by adopting vari-
ous vessel shapes. By comparing the simulation results
with previous full-wave simulation from AORSA [19], we
verify capabilities to simulate tokamak plasmas beyond
space plasmas.

This paper is structured as follows: a brief summary
of the FW2D code is described in Section II. Sections
III and IV contain two-dimensional full-wave simulation
results of fast compressional wave propagation in the
magnetosphere and NSTX/NSTX-U tokamak plasmas,
respectively. The last section contains a summary.

II. FW2D MODEL DESCRIPTION

We developed a finite element wave code appropriate
for general geometries [8, 10]. The code currently solves
the cold plasma wave equations in two dimensions. As-
suming time dependence, exp(�i!t), the linear and cold
plasma wave equation takes the form,
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where E is the perturbed electric field, ! = 2⇡f is the
wave angular frequency, c is the light speed, ✏ is the di-
electric tensor and j
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is the external current source. A
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The collisions can be adopted near a simulation boundary
to provide for absorbing boundaries or be added in the
simulation domain to represent an ad-hoc model for wave
dissipation and/or absorption as shown in Ref. [8].

The dielectric tensor ✏ is expressed in coordinates
aligned along and across the local ambient magnetic field
direction b̂ ⌘ B/|B|, where B is an ambient magnetic
field. For an axisymmetric plasma model, Eq. (1) can be
expressed in cylindrical (r, z, �) coordinates and all vari-
ables are represented as a superposition of Fourier modes
with dependence exp(in

�

�), where n
�

is the toroidal
wave number.

The electric field E is represented in terms of its pro-
jections along (b̂) and perpendicular (⇠̂, ⌘̂) toB. For mag-
netospheric dipole magnetic field, we define ⇠̂ ⌘ �̂ with

the assumption of B · �̂ = 0 [8] while ⇠̂ ⌘ r̂ ⇥ b̂ for toka-
mak geometry [10]. We also define ⌘̂ ⌘ b̂⇥ ⇠̂ to complete
the orthogonal coordinate. Thus the electric field can be
described to
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Eq. (1) has been solved on an unstructured triangular
mesh. We represent the variation of the electric field
within each triangle by vertex-based linear finite elements
local basis function, F

j,k

, where j labels each triangle and
k = 1, 2, 3 labels each of its vertices. The F

j,k

varies
linearly between 1 at the kth vertex and 0 at the other
vertices, and is identically 0 outside triangle j, thus the
electric field is

E =
X

j,k

E
j,k

F
j,k

. (4)

Then Eq. (1) is cast into matrix form by taking its inner
product in turn with each F

j,k

, and integrating by parts
to obtain the weak variational form (see for example of
Ref. [26])
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(5)
Substitution of Eq. (4) into Eq. (5) yields a sparse ma-
trix system that is amenable to solution by standard algo-
rithms. To take advantage of the sparseness of the matrix
system, we employed a Gibbs algorithm [27] to reorder
the mesh to minimize the bandwidth of the matrix.
One advantage of using the finite element method is

that the local basis functions that are employed can be
readily adapted to boundary shapes and can be packed
in such a way as to provide higher resolution in regions
where solutions may exhibit singular behavior. Where
the geometry is more complex (near the boundary and
near singularities) the wave solution needs to be resolved
by small elements to give good global accuracy.
Moreover, the density of the mesh can be specified

based on the expected wavelength obtained from solu-
tion of the local dispersion (except close to resonances)
so that the most e�cient resolution can be used. We
generated the mesh by using an adoption of DISTMESH
[28] or TRIANGLE [29] algorithms. The algorithms con-
struct 2D triangle meshes for given specific boundaries
and target density function. These mesh algorithms are
particularly useful because it allows us to pack extra reso-
lution where waves propagate with fine small wavelength
(See Figure 1(d)).

III. FAST COMPRESSIONAL WAVES IN
EARTH MAGNETOSPHERE

It is well known that the plasmaspheric plasma can ex-
pand beyond the plasmapause in the form of the dense
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FIG. 1. The adopted plasma parameters for fast compres-
sional wave simulations of ! = 2⇡f = 0.1Hz. (a) The ambi-
ent magnetic field (T), (b) the electron density (m�3) based
on plasma density model [30] with the addition of a plasma-
spheric plume added at 5.5 RE, (c) The Alfvén velocity (VA)
calculated using given magnetic field and the density, and (d)
the density of the mesh specified based on the expected wave-
length obtained from the solution of the local dispersion.

blobs, the plume (see Figure 1 of Ref. [31]). In order
to consider the e↵ects of plasmaspheric plume on wave
propagation, we have examined two-dimensional propa-
gation of fast compressional waves in a magnetospheric
dipole geometry as an example of the utility of FW2D
code.

For the ambient field, we have taken a dipole as shown
in Figure 1(a). The adopted electron density profile is
also in Figure 1(b). The inner magnetospheric density
model used in this calculation is based on the obser-
vational studies [30, 32], while a background density of
1cm�3 is imposed in the outer magnetosphere.

In order to examine the plume e↵ects on wave propaga-
tion, we consider cases with and without a density plume
localized near L = 5.5, where L is a parameter which at
the magnetic equator corresponds to the radial distance
from the Earth’s center expressed in units of Earth radius
(RE) [33]. The Alfvén velocity (V

A

) is calculated using
given magnetic field and the density as shown in Figure
1(c). Here, it is clearly shown that the plume provides a
local reduction of V

A

, hence Alfvén velocity well appears
near L = 6. The density of the mesh can be specified
based on the expected wavelength obtained from the so-
lution of the local dispersion. Since we prescribe that
the wave frequency of f = !/2⇡ = 0.016Hz is lower than
the ion cyclotron frequency of f

ci

= !
ci

/2⇡ = 0.3Hz at
L = 8 in the magnetic equator in electron-proton plasma,
the wavelength (�) of the fast compressional wave can be

FIG. 2. Wave solution of the azimuthal electric field E� and
the total electric field amplitude |E| for a ! = 0.1Hz fast com-
pressional wave, which is launched at 8 RE (a-b) without and
(c-d) with plume. Without plume, the waves reflect and max-
imum wave power occurs at plasmaspheric boundary, how-
ever, with plume wave energy is trapped in the plume when
the plume exists. Wave power with plume is much weaker
than without plume and this is evident the wave energy is
leaky well with plume. The Alfvén velocity profile and the
wavelength at the magnetic equator also plotted in this fig-
ure. Here the arrows in Alfvén velocity profile indicate wave
reflection locations, i.e., plasmaspheric boundary where the
plasma density and Alfvén velocity tend to be steeper.

approximated as

� / V
A

!
, (6)

thus the mesh density is proportional to V
A

as shown in
Figure 1(b).
Because we assume that all waves at the ionosphere

totally reflect, which is similar to the previous time-
dependent MHD simulation [7], reflecting boundary con-
ditions are prescribed at the Earth’s surface, while ab-
sorbing boundary conditions are adopted at all other
boundaries.
Figure 2 shows the wave solutions of the azimuthal

electric field component (E
�

) and the total electric field
strength (|E|) with and without plasmaspheric plume
for f = 0.016Hz. A large-scale compressional wave is
launched in J

�,ext

at 8 RE in the model. The wave propa-
gates away from the source both earthward and tailward.
The equatorial Alfvén speed and wavelength profile along
radial direction are also plotted in this figure. The tail-
ward traveling wave propagates to the boundary where it



4

is absorbed, so it does not a↵ect the solution in the inner
magnetosphere. As waves propagate into the inner mag-
netosphere, they are refracted away from the earthward
Alfvén velocity gradient leading to enhanced wave power
at the equatorial plasmaspheric boundary where both V

A

and density profile tend to be steeper in the inner magne-
tosphere. Existence of the plasmaspheric plume pushes
the location where the wave power enhancement occurs
to outer magnetosphere, for instance, it occurs at L ⇠ 5
with plume and L ⇠ 2.5 without plume as shown in Fig-
ure 2.

It is also apparent that when the plume exists wave
energy is trapped in the ‘Alfvén velocity well’ and forms
a leaky eigenmode-like structure with plume, while waves
propagate as plane waves in the case without the plume.
This trapping of wave energy in the plasmaspheric plume
also a↵ects how much magnetosonic wave energy can
reach the plasmaspheric boundary, where wave energy
accumulates as the wave reflects. In addition, Figure 2
shows that wave energy without the plume near the plas-
maspheric boundary is much stronger than wave energy
with the plume. It is evident that the plasma plume
sucks in the wave energy shadowing the plasmaspheric
boundary from the pile-up of wave energy seen in the
case without the plasma plume.

IV. FAST WAVE PROPAGATION IN THE SOL
OF NSTX/NSTX-U

In order to show and benchmark the new FW2D capa-
bility to simulate RF wave in tokamak plasma, we adopt
the plasma equilibria of NSTX and NSTX-U, which has
been used for AORSA wave simulations [19]. In par-
ticular, for NSTX-U, we analyze a projected of H-mode
scenario with BT = 1T obtained by the TRANSP code
[34, 35].

The outer boundaries are assumed to be perfectly re-
flecting, which is di↵erent from the boundary condition
of Section III, and collisions are included in the plasma
core to absorb all waves. Thus the plasma absorbs all
incoming wave energy without energy loss at the bound-
aries and this enables us to estimate the collisional power
losses both in the plasma core and SOL when artificial
collisions are considered.

We perform simulations using single toroidal mode
numbers, n

�

= �12 or �21, which correspond to an
NSTX/NTSX-U antenna phase of �90� or �150�, re-
spectively, and various densities in front of the antenna
(Nant). The waves are launched with wave frequency of
f = 30MHz. We use the same density profile as Ref. [19]
(see Figure 1 of Ref. [19]) assuming that the electron
density in the SOL is exponentially decaying.

Figure 3 shows the total electric field amplitudes (|E|)
as well as the left- (|E+|) and right-handed (|E�|) wave
electric field amplitudes obtained by FW2D (first row)
and AORSA (second row) for n

�

= �12 and Nant =
1 ⇥ 1018m�3 in NSTX. In this figure, we also plot the

FIG. 3. The electric field amplitude in NSTX shot 130608
for di↵erent wave polarizations, such as total (|E|) as well
as left- (|E+|) and right-handed (|E�|) polarizations, with
toroidal mode number n� = �12, electron density in front
of antenna Nant = 1 ⇥ 1018m�3, and !/2⇡ = 30MHz using
(a-c) FW2D and (d-f) AORSA codes, respectively. The black
dashed and red solid curves indicate the LCFS and FW cuto↵
layer, respectively. Here, R and Z are radial and poloidal
(vertical) directions.

LCFS (dashed black curves) and the fast wave (FW)
cuto↵ layer (red curves). Here, simulation results from
AORSA are reproduced from Ref. [19]. FW2D results in
Figure 3 are in excellent agreement with AORSA. We
also examine HHFW propagation using various densi-
ties in front of the antenna. Figure 4 show the wave
electric field amplitude from FW2D and AORSA for a
single toroidal mode n

�

= �21 and various densities in
front of antenna, Nant = 1, 2, and 3 ⇥ 1018m�3, respec-
tively. When the FW cuto↵ is ‘closed’ in front of the an-
tenna and the waves are evanescent as shown in Figure
4(a), the small RF field amplitude in the SOL remains
localized near the antenna. When Nant increases su�-
ciently to ‘open’ the FW cuto↵ in front of the antenna
as shown in Figure 4(b), the wave amplitude in the SOL
strongly increases showing a standing wave structure, as
previously found in simulation from AORSA in Figure 4.
Simulations for NSTX-U have been also performed (not
shown here) and the results lead to the same conclusions
in agreement with previous results [19, 20].

The fraction of power losses in the SOL (Pabs) can be
defined as a ratio between total power absorbed to the
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FIG. 4. Total electric field amplitude in NSTX shot 130608
using (a-c) FW2D and (d-f) AORSA code for di↵erent den-
sity values in front of the antenna (shown in the plots) with
toroidal mode number n� = �21.

FIG. 5. Fraction of power lost to the SOL (Pabs) of (a-b)
NSTX and (c-d) NSTX-U calculated by FW2D and AORSA
as a function of the density in front of the antenna (Nant) for
n� = �12 and -21. The vertical lines represent the critical
density (Nec) at which the cuto↵ starts to be open in front of
the antenna. Here calculation from AORSA are reproduced
from Ref [19].

plasma (Wtot) to power loss in the SOL (WSOL),

SOL power loss (P
abs

) =
WSOL

Wtot
. (7)

For FW2D code, because it adopts a cold plasma approx-
imation, power losses in the plasma core and SOL have
been calculated by adopting artificial collisional e↵ects,
which cause all incoming wave power to be absorbed
in the plasma. Thus power losses can be calculated as
WSOL =

R
⇢

pol

>1
J · E⇤dV and Wtot =

R
J · E⇤dV , where

V , J, and ⇢pol are the volume, the perturbed current
density, and the square root of the normalized poloidal
flux, respectively. On the other hand, the AORSA code
includes the plasma kinetic e↵ects. Therefore the power
absorption in the plasma core is evaluated by the Landau
damping and transit-time magnetic pumping. Artificial
collisions, however, has been implemented in AORSA as
well to estimate the power losses in the SOL plasma (see
Ref. [19] for additional details).
Figure 5 showed the predicted Pabs using FW2D and

AORSA as a function of Nant assuming ⌫/! = 0.01 [19]
for NSTX (a-b) and NSTX-U (c-d). Despite the discrep-
ancy of methodology to calculate Pabs between AORSA
and FW2D codes, the results show very good agreement.
The vertical lines in Figure 5 represent the critical den-
sity (Nec) at which the cuto↵ starts to be open in front of
the antenna, which is proportional to the ambient mag-
netic field [13, 14, 19, 20]. Showing good agreement with
AORSA, Pabs sharply increases and reach the maximum
value when Nant is slightly larger than Nec. The maxi-
mum loss occurs when the electric field amplitude in the
SOL is enhanced [19, 20] as shown in Figure 4.
We also scanned Pabs for various value of ⌫/! (Results

are not shown here) and we found that Pabs increases ba-
sically linearly as ⌫/! increases, thus the general behav-
ior of Pabs does not change varying ⌫, which is consistent
with Ref. [20].
Because the FW2D code uses the finite element

method and an unstructured mesh, this code easily
adopts various boundary shapes. In addition to the
rectangular boundary shape, we adopt a vacuum ves-
sel boundary as shown in Figure 6. Here, except the
boundary, all plasma parameters are the same as the
simulations in rectangular boundary shape from Figure
3 for n

�

= �12 and Nant = 1 ⇥ 1018m�3 and Figure
4(b) for n

�

= �21 and Nant = 2 ⇥ 1018m�3. Figure
6 clearly shows that wave propagation behavior in the
SOL strongly depends on the boundary shape. Since the
launched waves at the antenna propagate through the
SOL and reach the plasma core, wave solution in the
plasma core are also a↵ected by the boundary shape. In
Figure 6, the FW cuto↵ is open because of the Nant ex-
ceed the critical density Nec. However, unlike Figure 3
and Figure 4(b) where standing mode structure of the
FW mode appear in Figure 6, the waves are strongly
localized near the antenna without standing mode struc-
ture. Therefore, these initial results suggest that the use
of a realistic vessel boundary might play an important
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FIG. 6. Two-dimensional electric field amplitude from FW2D
code with a vacuum vessel boundary for (a) n� = �12 and
Nant = 1 ⇥ 1018m�3, which is the same condition as Figure
3 and (b) n� = �21 and Nant = 2 ⇥ 1018m�3, which is the
same as Figure 4(b), respectively.

role and a detail numerical investigation on this aspect
is necessary. A more comprehensive work on this specific
topic will be part of a separate paper.

V. DISCUSSION AND SUMMARY

A two-dimensional full-wave (FW2D) code using the
finite element method has been developed to under-
stand plasma wave behavior in space and tokamak plas-
mas. In this paper, we show the capability of the code
for both space and tokamak plasmas. We successfully
demonstrate plasma waves in a wide range of simula-
tion domain scale (1.5m � RE), magnetic field strength
(10�8 � 0.5T), electron density (106 � 1019m�3), wave
frequency (10�1 � 107Hz), as well as magnetic field con-
figurations (dipole and tokamak geometry). As example,
we examined fast compressional wave in Earth’s magne-
tosphere and HHFW in the SOL of the tokamak. We also
perform simulations using various boundary shapes for
tokamak plasmas, which is beyond the previous full-wave

AORSA code. Furthermore, the computational time of
the FW2D code is short, for instance, it takes about 10
seconds for mesh number is 6000 and 15 minutes for mesh
number 1e6 to get the results in Section III and Section
IV, respectively, for a single processor.
We examined fast compressional wave propagation in

the inner magnetosphere using the FW2D code is dra-
matically modified by a plasmaspheric plume. The re-
sults show that wave energy is trapped in the plume
showing a leaky eigenmode-like structure with plume,
which is consistent with to the detected magnetosonic
waves from the satellites [36].
We also performed numerical simulations of HHFW in

the SOL plasmas of NSTX/NSTX-U by adopting vari-
ous boundaries. Comparison the results with previous
full-wave simulations from AORSA code showed that al-
though the FW2D code uses a cold plasma approxima-
tion, the electric field and the fraction of the power losses
in the SOL plasmas show excellent consistency and agree-
ment with each other. Similar to the AORSA simula-
tions, the electric field amplitude and the fraction of the
power losses in the SOL increase when the electron den-
sity in front of the antenna is large enough to open the
FW cuto↵. Therefore, the results in this paper confirm
that the FW2D code produces the same power loss as
AORSA.
We also adopted the vacuum vessel boundary into the

FW2D. The initial results in this paper show the wave
solution strongly depends on the boundary shape. For
instance, when Nant is slightly higher than Nec, HHFW
cannot propagate to the SOL in the vacuum vessel as
shown in Figure 6 while waves in the rectangular bound-
aries propagate to the SOL as shown in Figures 3 and 4.
Therefore, these results suggest that realistic numerical
domain should be considered in order to understand the
wave propagation behavior as well as collisional power
losses in the SOL. A more comprehensive work on this
task will be published in a separate paper.

ACKNOWLEDGMENTS

The authors would like to thank Masayuki Ono and
Stanley Kaye for their valuable comments. This material
is based upon work supported by the U.S. Department
of Energy, O�ce of Science, O�ce of Fusion Energy Sci-
ences under contract number DE-AC02-09CH11466, Sci-
DAC grant AT1030200, NASA grants 80HQTR18T0066,
and also NSF grant AGS1602855.

[1] J. L. Rauch and A. Roux, J. Geophys. Res. 87, 8191
(1982).
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