

NSTX MHD Research Proposal

Improved performance through increased understanding and control

Jonathan Menard Princeton Plasma Physics Laboratory

For the NSTX National Team

DOE Review of NSTX Five-Year Research Program Proposal June 30 – July 2, 2003

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL PSI** SNL UC Davis **UC** Irvine UCLA UCSD **U** Marvland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching **U** Quebec

Overview of presentation

- MHD of high β_T and β_P (long-pulse) discharges – Relevant to IPPA 5 and 10 year goals
- Overview of research plans
 - Motivated by recent results
 - Global modes, NTM, ELM, fast ion MHD, RWM, etc.
- Summarize with integrated timeline
 - Discuss yearly progression of research goals
 - Discuss tools for achieving those goals

 $\label{eq:metric} \underbrace{\text{MHD Goal}}_{\text{diagnostics for development of control tools}} \Rightarrow \text{Provide MHD understanding and} \\ \text{diagnostics for development of control tools} \\ \text{needed to achieve long-pulse, high-} \beta \text{ discharges} \end{cases}$

Great progress made in achieving high β

- β_T as high as 35%
- $\beta_N \approx 6 \text{ for } I_p/aB_{T0} = 2 6.5$
- β_N increased 50 100%
 within 1+ years of operation
 - H-mode, error-field reduction

- Recent calculations indicate: *Ideal no-wall limit* ≈ ⟨β_N⟩ ≤ 3.5 (independent of R₀/a for q* > 1.7)
- Many shots have clearly exceeded this scaling

 $\left< \beta \right> \equiv 2 \mu_0 \left / \left< B^2 \right>$

NSTX MHD Plan Overview – J. Menard

NSTX 5 Year Proposal Review, 6/30-7/2/03

Rotation plays strong role in high- β MHD

Simulations provide insight into 1/1 mode physics (from Wonchull Park, M3D code, PPPL)

Simulation without rotation ⇒

B-field lines Hot core Cold island

Reconnection interrupted with sufficient rotational flow and shear May explain long-lived 1/1 modes in high β_T NSTX discharges

NSTX MHD Plan Overview – J. Menard

Stability results motivate shaping enhancements

NSTX MHD Plan Overview – J. Menard

NSTX 5 Year Proposal Review, 6/30-7/2/03

Measure, control, and optimize shape and profiles

_		💳 🔘 NSTX
•	 Study impact of enhanced plasma shaping Continue stability studies vs. κ and δ with present PF1A Utilize split-PF1A to increase κ and control x-points 	(FY03-05) (FY06-08)
•	 Perform J-profile variations and measurements First MSE constrained reconstructions Measure J-profile early during discharge ramp-up Scan I_P ramp-rate for high-β_T and β_P and optimize performance Assess low-A and kinetic effects on ballooning stability 	(FY04-05) (FY05) (FY04-06) (FY04-06)
•	 Benchmark and utilize equilibrium evolution codes (FY04-06) Characterize J(r), p(r) evolution, benchmark TSC, TRANSP, other Use codes to identify stable high-β targets with high NICD fraction 	
•	Control J profile – MSE-constrained rtEFITs – Attempt real-time J(r) control using HHFW, EBW – Combine J profile and shape control, study MHD as $\beta_T \rightarrow 40\%$, f _N	<i>(FY06-08)</i> _{ICD} → 100%
•	Develop real-time predictive capability for stability	(FY04-08)

Locked-modes highlight role of non-axisymmetric fields

(DNST)

- PF5 vertical field coils found to generate large n=1 δB_r in 2001
- Coils subsequently re-shaped:

- Mode-locking observed at lower n_e, B_T
- Modes still lock to preferred locations

800kA, 2×10¹⁹ m⁻³, 3.5kG

NSTX MHD Plan Overview – J. Menard

Active coils will allow studies of non-axisymmetric physics

- Study locked-mode physics
 - Measure locked-mode structure with new internal sensors
 - Use new sensors to infer sources of error-field
 - Apply known error-fields to elucidate locking physics
- Study rotation damping with NBI and high- β
 - Vary applied error-field to minimize rotation damping
 - Compare coil currents to those computed to minimize EF
 - Develop pre-programmed error-field correction algorithms
 - Study impact of applied field near and above no-wall limit
- Develop active control capabilities (FY04-06)
 - Utilize real-time internal sensor measurements and deploy dynamic error-field correction algorithms

New internal RWM/EF sensors

(FY04) (FY04-05) (FY04-05) (FY04-06)

(FY04) (FY04-05) (FY04-06)

NSTX MHD Plan Overview – J. Menard

NSTX 5 Year Proposal Review, 6/30-7/2/03

Understand and control NTMs

Enhance code capabilities Implement more accurate wall shape model in PEST-III (FY03) Add Mirnov signal model for wall-stabilized tearing modes (FY03-04) Compare model to experimental data (FY03-08) Enhance diagnostic coverage and physics understanding Assess seeding mechanisms for NTMs in various regimes (FY04-06) Investigate non-linear coupling of NTMs of different helicities (FY04-06) Work with MAST NTM experts on NTM similarity experiments (FY04-06) _ Measure *m*-numbers with new poloidal Mirnov array (FY05-06) Infer island widths from measurements and improved modeling (FY05-06) Assess CD needs for EBW CD feedback stabilization of the NTM Prepare for NTM control (FY06-08) Alter NTM stability with global J-profile variations from EBW-CD Assess EBW power requirements for NTM stabilization Direct NTM suppression with pre-programmed EBW-CD Verify CD requirements with NTM modeling of stabilization

Understand and optimize ELM stability

•	Determine operational dependencies – Explore impact of shaping, collisionality, and gaps on ELM stabil – Correlate destabilization of NTMs with ELM activity	(FY04-05) lity
•	 Enhance diagnostic coverage Install very high-<i>n</i> array DAQ to measure of ELM <i>n</i>-numbers Begin measurement of edge gradients and ELM structure Use reflectometer or other high-res near-edge profile diagnostic Correlate measured mode numbers and ∇p with ELM type 	(FY04-05) (FY05-06) (FY04-06)
•	 Compare observed stability characteristics to theory Perform controlled experiments to excite different ELM types Kinetic EFITs with MSE and core and edge p-profile information Study ELM threshold, mode structure, and toroidal mode number Compare to results from codes ELITE, DCON, PEST, and/or GATO 	(FY06-08) Prs
•	Optimize edge stability for long-pulse operation	(FY04-08)

STX

Fishbone & TAE can cause fast ion losses

- *n* > 1 modes interpreted to be TAE
 - n = 1 as "bounce" fishbones
- Transport of core fast ions by n=2 mode
 - Fast ions then destabilize *n*=1, ions lost

NSTX/DIII-D Similarity Experiment Finds TAE Mode Number Scales as Expected

Fast-ion MHD physics crucial to next-step ST Assess impact of fast-ion-driven MHD on high- $\beta_{\rm P}$ operation (FY03-05) Perform inter-machine research (FY03-05) CAE similarity experiments on NSTX and DIII-D Enhance diagnostic coverage Measure CAE poloidal amplitude distribution and wavelength (FY04-05) Use new outboard poloidal Mirnov array Study role of q profile (MSE) on gap structure of TAE modes (FY04-05) Understand fast-ion loss physics (FY04-05) Correlate neutron rates with fast-ion loss measurements (FLIP, NPA) Correlate lost ion energy w/ mode amplitude, n-number, and frequency Measure internal structure of fishbone, TAE, CAE, and GAE (FY05-07) reflectometer, EBW spectrometer, or upgraded bandwidth SXR Develop beam-ion profile diagnostics for fast-ion pressure profile (FY04-future) Use profile shape in ideal and hybrid stability calculations Assess influence of fast-ion MHD on fast-ion population properties neutron rate, power deposition, fast-ion angular momentum, etc. Compare to theory and modeling with NOVA, HINST, HYM (FY05-07)

Fast rotation modifies equilibrium, stability

Include flow effects in equilibrium and stability codes:

- Include rotation in equilibrium reconstructions (EFIT) (FY03-04)
 Continue to assess flow stabilization of kink modes (M3D) (FY03-05)
- Use FLOW equilibrium code for interpreting experimental data (FY04-06)
 - Infer changes in fast ions from changes in central gradient
- Cross-check against fast ion profile data (NPA, FLIP, etc.)
- Develop linear stability code based on FLOW equilibrium
 - Study influence of flow and flow-shear on ballooning stability

(FY04-06)

(FY04-future)

Steady-state ST requires high β_{P} Self-driven current fraction $\propto \beta_{\rm P} \equiv 2\mu_0 \langle p \rangle / B_{\rm P}^2$ $\beta_T \propto \beta_N^2 / \beta_P \Rightarrow$ Need very high β_N for steady state 20 9 **NSTX** β_T=40% % 8 **Target equilibria** 15 2**Α**β_t/(1+κ²) High β_T and β_N 10 6 High β_{P} and β_{N} 5 Want $q^* \approx 2-3$ at 2002 data ∣Հ<mark>⊾3</mark> 2001 data Ω high $\beta_N > 8$ 0.0 0.4 1.0 0.2 1.2 0.6 0.8 Α

Many high- β_P shots operate above no-wall limit

NSTX high β_P shots are approaching <u>ideal-wall</u> limit • Motivates RWM physics studies and active feedback system \Rightarrow See next talk by S. Sabbagh

Proposed MHD Research Timeline

SUMMARY MHD GOAL:

Provide MHD understanding and diagnostics for development of control tools needed to achieve Stable, long-pulse, high-β discharges

The plan proposed to achieve this goal will:

- Enhance shaping, perform J-profile measurement and control
- Do EF & RWM physics and control w/ non-axisymmetric coils
- Enhance diagnostics and use J-profile tools for NTM physics
- Enhance ELM diagnostics and understanding optimize edge
- Understand fast-ion MHD determine impact on ST
- Understand and incorporate flow in equilibrium and stability