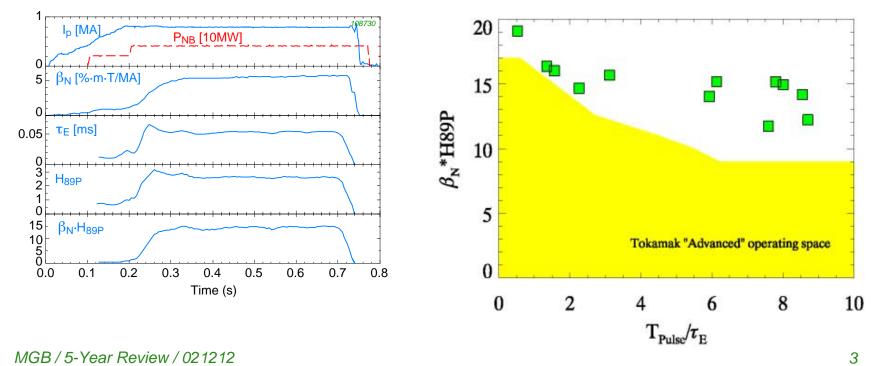
\bigcirc NSTX —

Integration and Plasma Control

M.G. Bell, D.A. Gates 5-Year Plan Review December 12–13, 2002

IPPA & FESAC Have Established Ambitious Goals for NSTX


• IPPA goal 3.2.1.6:

"integrate high confinement and high beta"

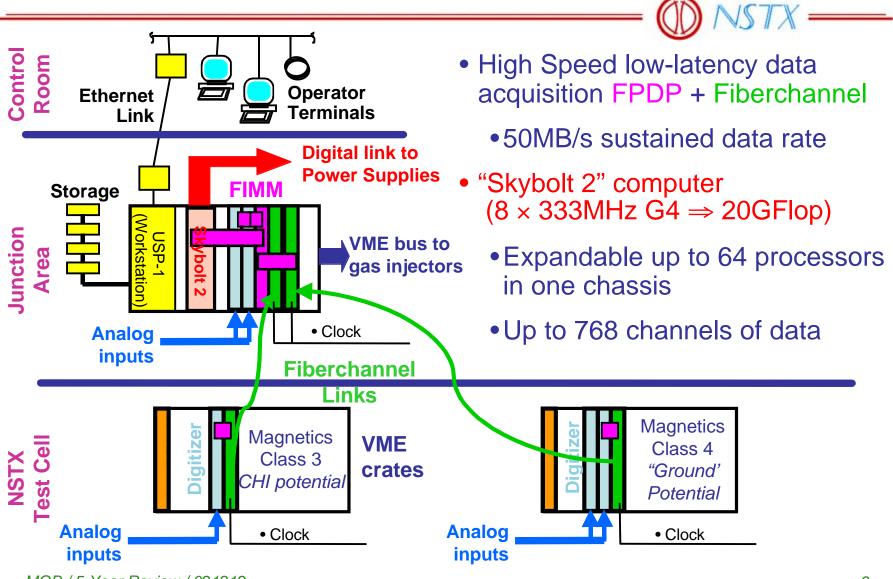
- FESAC 5-year Objective #2.1
 - "...assessing high-beta stability, confinement, self-consistent high-bootstrap operation, and acceptable divertor heat flux, for pulse lengths much greater than energy confinement times"
- Each component represents a challenge in itself
- Integration requires accommodating competing discharge requirements
 - Achieving compatibility of conditions for long pulse will be particularly challenging

Considerable Progress Achieved Towards Goal of High β and τ_E

- During 2002, NSTX achieved in a discharge
 - $-\beta_N \approx 6\% \cdot m \cdot T/MA$
 - $\tau_{\text{E}} \approx 50 \text{ms}, \text{H}_{89\text{P}} \sim 2.5$
 - duration ~400ms, ~ $8\tau_E$

Advanced Plasma Control Necessary for Achieving "Integration Goals"

• Equilibrium


– I_p , R_p , Z_p , κ , δ , stabilizer gaps

- Heating and current drive
 - $P_{NBI,} R_{NBI}, P_{HHFW}, \mathbf{k}_{||}, [J(r)], [EBW coupling]$
- Fueling and density control
 - gas [supersonic], pellets, [CTs], [edge pumping]
- Instabilities
 - Vertical, β , error fields, RWM, NTM
- Edge power and particle fluxes
 - Divertor strike point sweeping, edge density, divertor density, divertor radiation, [lithium module]

Elements of Control

- Diagnostics
 - Configuration, profiles (p, v_{ϕ} , J), instabilities, fluxes
- Real-time processing
 - Equilibrium, stability limits, mode structure, driven current
- Actuators
 - Coils & power supplies, NBI, HHFW, [EBW], CHI, fueling, pumping
- Telemetry
 - Fast, flexible, expandable data communication
 - Will require upgrade of power supply data link

Control System Hardware

MGB / 5-Year Review / 021212

2003 – 2004: Control of Plasma Shaping and Heating Power

Status Plasma shape with programmed currents

- $\kappa \approx 2.5$ transiently; highest β with $\kappa \approx 2.0$, $\delta \approx 0.8$
 - higher κ would facilitate high β at high f_{bs}
- first control with rt-EFIT at end of '02 run
- 2003 1) Develop routine feedback control for shape (κ, δ, gaps) with rt-EFIT analysis
 2) Investigate prospects for higher κ
- 2004 1) Upgrade control for higher κ
 - faster power supply link
 - 2) Feedback control of NB power (PWM) to control β

2005 – 2008: Inclusion of Profile Data in Real-Time Equilibrium Analysis

Status rt-EFIT has operated with only magnetic data

- inclusion of profile data will substantially improve analysis
- 2005 1) Include MPTS data for p_e (*c.f.* offline EFIT)
 - expand real-time diagnostic data acquisition
 - 2) Initiate real-time assessment of stability limit
 - may be based on I_i, F_p in first instance
- 2006 Include MSE-CIF polarimetry data
- 2007 Include MSE-LIF |B| data
- 2008 Develop real-time stability assessment

2003 – 2005: Control for Resistive Wall Modes

- Status RWM growth inferred from development of kinklike perturbations for β above no-wall limit and rapid slowing of plasma rotation
- 2003 Detailed measurements of RWM structure with newly installed set of B_r, B_p pickup coils
- 2004 Installation of RWM control coils (B_R) and power supplies
 - null "average" B_R perturbation with preprogrammed currents
- 2005 Implement feedback control to counteract mode drag and maintain plasma rotation

2003 – 2004: Control for Coaxial Helicity Injection

- Status 400kA toroidal current in 300ms discharge
 - Preprogrammed currents no feedback control
 - Absorber arcs terminated most discharges
 - New absorber insulator and nulling coils in 2002 opening
- 2003 1) Assess new absorber insulator and need for local field control in absorber
 - 2) Assess HIT-II "forced reconnection" scheme and add programmed inductive drive
- 2004 1) Absorber field control, if needed
 - 2) Feedback control of CHI plasma to
 - promote reconnection
 - diagnose profiles and MHD activity

2004 – 2008: Control of Neoclassical Tearing Modes

Status – NTMs identified at high β_P with $q_{min} < 3/2$

• But not seen in recent high β_P plasmas with higher q_{min}

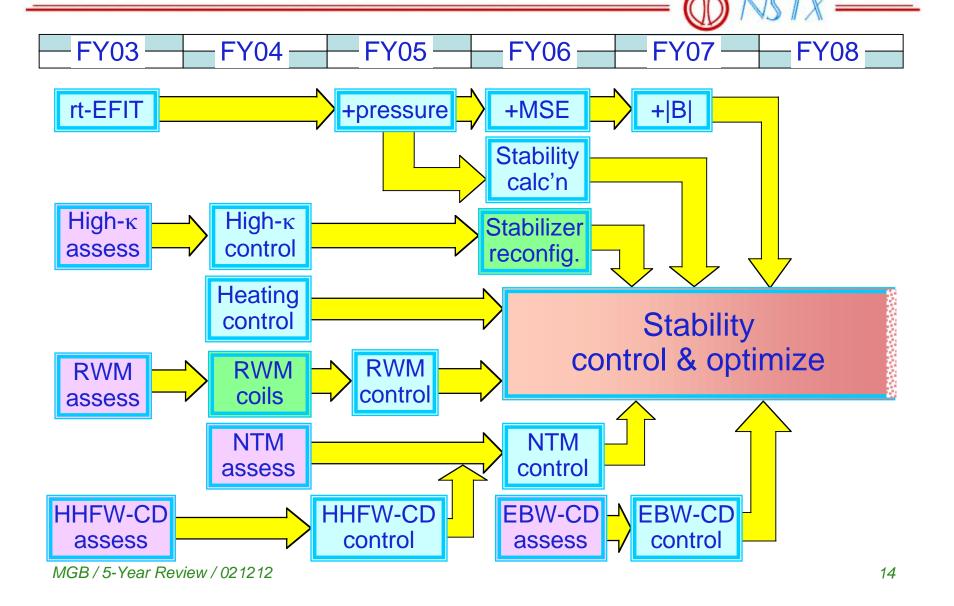
Expect control through localized current drive

2004 Assess conditions for and impact of NTMs

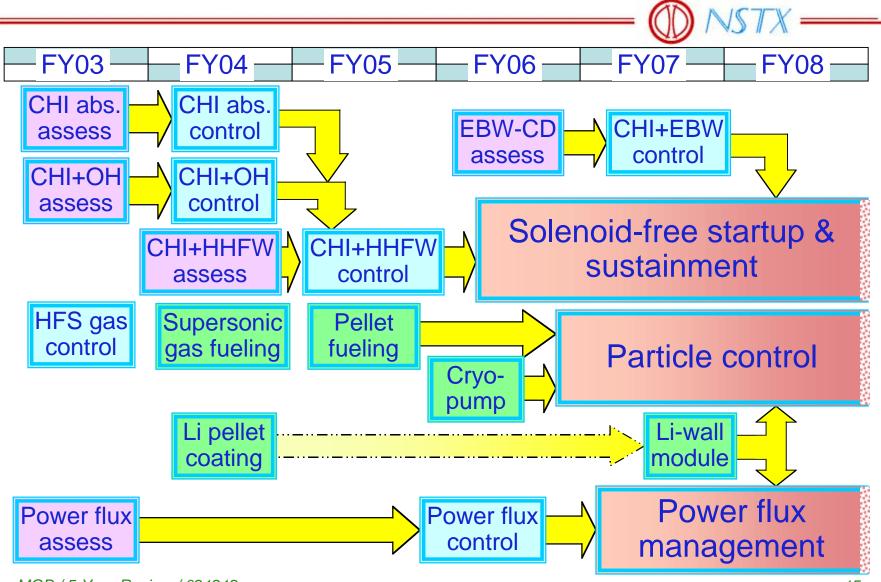
-Develop NTM detection & localization methods

- 2005 Develop control of localized HHFW-CD
- 2006 Combine real-time detection and localized HHFW-CD to control NTMs
- 2008 EBW-CD for NTM control

2003 – 2008: Integrating Techniques for Particle & Power Flux Management


- Status Continuous density rise during H-mode
 - Divertor heat fluxes probably acceptable for 2s but marginal for 5s pulses at full power
- 2003 Control of improved HFS gas injector
- 2004 Control supersonic gas injector Assess density control with Li pellet coating
- 2005 Install & control deuterium pellet injector
- 2006-7 Assess and integrate cryo-pump Strike-point control for power flux mitigation
- 2008 Density control with lithium wall module

2005 – 2008: Integrating Techniques for Solenoid-Free Startup & Sustainment


Status Indications of HHFW-CD, ~100kA @ 1 – 2 MW

- 2005 Integration and control of HHFW-CD with CHI initiation
- 2006 Reduce role of induction for current sustainment
- 2007 Integration and control of EBW-CD with CHI initiation
- 2008 Demonstration of fully non-inductive startup & sustainment with increasing pulse length

Integration & Control Builds on Progress in Facility, Diagnostics & Topical Research

Integration & Control Timeline (2)

MGB / 5-Year Review / 021212