

Transport and Turbulence Five Year Plan

S.M. Kaye, D. Darrow and the NSTX Team PPPL, Princeton University Princeton, N.J. 08543 USA

Five Year Planning Workshop PPPL, Princeton Univ. 12-13 Dec. 2002 NSTX Transport Goals Geared Towards Determining the Attractiveness of the ST and Contributing to Toroidal Transport Physics

• Establish key τ_E and transport scalings

- e⁻ vs i⁺ transport, dependence on ρ^* , β_T , ω_{ExB}

- Assess roles of low- and high-k turbulence in heating and transport
- Assess fast ion confinement
 - Influence on neoclassical, turbulent heating and transport
- Determine influence of $E_r (\omega_{ExB})$ on turbulence, L-H

Use knowledge gained to control plasma transport Produce p(r), j(r), for high β_T , non-inductive current

- Five year goal (IPPA 3.1.1)
 - Advance the scientific understanding of turbulent transport, forming the basis for a reliable predictive capability in externally controlled systems
- Ten year goal
 - Develop fully integrated capability for predicting the performance of externally controlled systems including turbulent transport, macroscopic stability, wave particle physics and multi-phase interfaces

Three-Pronged Approach to Achieving the Transport Goals in FY03-08

- FY03-08 experimental research plan
 - Detailed experiment/theory comparison
 - Develop and extend profile and turbulence diagnostics
 - Electrostatic, electromagnetic instabilities
 - Plasma response
- Continued development of theoretical and numerical tools
 - Understand fundamental transport physics
 - Develop predictive capability
- Contrast and compare ST with conventional R/a devices (e.g., ITPA)

NSTX Parameters Challenge Existing Theory Framework

ST Features/Theory Issues

- Local $\beta_t \rightarrow 1$ (75% achieved experimentally in core)
 - Electromagnetic effects
- Trapped particle fraction → 1
 - Validity of fluid treatment of electrons
- $\rho_i/L\sim0.2$ (near edge); $\rho_i\sim1$ to 3 cm
 - Validity of spatial scale length ordering
- High ∇B , ExB flow (>200 km/sec) \rightarrow flow shear (10⁵ to 10⁶/sec)
 - Effect on microstability and turbulence characteristics
 - Dominant (?) role of electron transport
- $V_{fast}/v_{Alfven} \sim 3 \text{ to } 4$
 - Fast ion driven instabilities (TAE, CAE/GAE)
- ρ_{fast}/a~1/5-1/3
 - Fast ion confinement, non-adiabatic behavior

Validity of present gyrokinetic treatment

Outline

- Experimental studies
 - Core transport (global, ions, electrons, momentum, particle/impurity, fast ions)
 - Edge transport and fluctuations
- Theory and modeling
- Research plan elements
 - Facility and diagnostic upgrades

Global Confinement Exceeds Predictions from Conventional Aspect Ratio Scalings

- τ_{E}^{exp} from EFIT magnetics reconstruction
 - Includes fast ion component
- Quasi-steady conditions

NSTX NBI L-modes Exhibit Similar Parametric Scaling as Conventional Aspect Ratio Devices

 $\tau_{\rm E}^{\rm NSTX-L} \sim I_{\rm D}^{0.76} B_{\rm T}^{0.27} P_{\rm L}^{-0.76}$

More accurate determination of R/a dependence needed!

Less severe power degradation in H-mode $\tau_E \sim P^{-0.50}$ - MHD vs confinement limit?

Different parametric dependences for more transient L-mode plasmas - Role of rotation?

Global Confinement - Plans

- FY03: τ_E scalings in RF&NBI, L&H; τ_Eth to ITER DB; R/a dependence in ohmic; start of similarity exp'ts (DIII-D)
- FY04: R/a in NBI intra- and inter-device; transient vs steadystate/role of rotation; rotation control with error field correction coils; dimensionless scalings with β_t, ρ*; relation of τ_E to q (MSE)
- FY05: Study of rotation dynamics on τ_E (poloidal CHERS)
- FY06: Relation of τ_E on q(r), E_r (LIF MSE)
- FY07: Profile control for optimized τ_{E} ; causal relation between rotation, τ_{E}

Ion Energy Transport - Plans

- FY03: Establish χ_i baseline (if and when anomalous); start to test role of ITG (T_i/T_e, n_e(r), ω_{ExB} dependence); compare to GK
- FY04: Extend ITG study; relation to rotation (error field correction coil); calibrated reflectometry to assess modes for possible stochastic heating; initial assessment wrt to low-k fluctuations
- FY05: Co vs counter to study effect of flow shear, thermal friction pinches; η_i , β' variation by pellet for ITG study; extend study of ion transport/low-k fluctuations
- FY06: Detailed study of ion transport to full-k turbulence; relate transport fluxes to changes in q, E_r (LIF MSE)
- FY07-08: Extend studies of ion tranpsort and full k-spectrum of fluctuations; predictive capability based GK/exp't comparisons

"Stiff" T_e Profiles during Flattop Period with NBI

Electron Energy Transport - Plans

- FY03: Establish χ_e baseline
- FY04: Test T_e resiliency (modulated HHFW); Assess role of ETG (vary T_e/T_i, η_e , β ' with RF); relate to q (MSE); compare to GK; initial high-k measurements
- FY05: Extend ETG study with pellets (η_e, β'); study effect of flow shear (co vs ctr) using poloidal CHERS; extend high-k comparisons
- FY06: Detailed study of electron transport to full-k turbulence; relate transport fluxes to changes in q, E_r (LIF MSE)
- FY07-08: Extend studies of electron transport and full kspectrum of fluctuations; predictive capability based GK/exp't comparisons

Momentum Transport Coupled to Plasma Transport

- Inferred momentum transport low ($\chi_{\phi} < \chi_{i} \le \chi_{neo}$)
- Temporal increase of τ_E associated with temporal increase of rotation (causality?)

Momentum Transport - Plans

- FY03: Establish χ_{ϕ} baseline (edge $v_{\phi,\theta}$ + CHERS); initial RF vs NBI comparison
- FY04: Extend RF vs NBI comparison; study effect of error fields on v_{ϕ}; study relation of v_{ϕ} and q(r) for ITB generation; compare χ_{ϕ} to GK estimates
- FY05: Co vs ctr/poloidal CHERS for assessment of nonambipolar losses and flow shear generation
- FY06-08: Relate E_r (LIF MSE) to flows (CHERS); study relation of E_r, v_φ and q(r) for ITB generation; determine rotation/confinement dynamics causality, study zonal flows (1 msec CHERS)

Particle/Impurity Transport Transport Properties Inferred from Perturbative Experiments

Neon injection: Impurity transport near neoclassical in core

Impurity/Particle Transport - Plans

- FY03: Impurity gas injection at higher β_T
- FY04: Supersonic gas injection for impurity transport, make use of USXR, TGS, GEM detectors
- FY05: Deuterium pellet injection for perturbative particle transport
- FY06-08: Extend perturbative experiments with impurity injector

Fast Ion Confinement Studies Just Starting

Results

- Decay of neutrons consistent with classical slowing down
- Loss rate measurements disagree with modeling
- Variations in neutron rate for nominally similar discharges

Plans

- FY03: Overall confinement trends with parameter, L vs H (sFLIP)
- FY04: Control loss fraction (vary gap)
- FY05: Non-ambipolar losses (co vs ctr); power deposition profile with neutron collimators
- FY06-08: Extend studies using an array of solid state detectors

Edge Characterization and Transport Studies (Including L-H) Have Just Begun

L-H transition: $P_{thresh} > P_{scal}$; I_p dependence

Edge power balance indicates inconsistency between EFIT separatrix location and MPTS

Fluctuation Characteristics Related to Plasma Transport

Radial correlation lengths of fluctuations related to τ_{E}

\tilde{n}/n goes down from L to H

Convective-cell ("blob") transport potentially significant

Edge Transport and Fluctuations - Plans

- FY03: Submit L-H data to ITER db; study role of E_r on transitions with gap, I_p variations, RF; extend radial correlation length, blob studies, edge pedestal characterization
- FY04: Identify dimensionless variables controlling L-H (similarity expts); preliminary assessment of low and high-k turbulence, compare to theory
- FY05: Co vs ctr/poloidal CHERS for assessment of E_r on L-H; extend studies of low- and high-k turbulence, comparison with non-linear GK results; extend edge characterization (He beam spectroscopy)
- FY06-08: Role of E_r (LIF MSE) extended; full k-spectrum turbulence measurements; edge transport barriers with CT injection; liquid Li/cryopump for density control; extend edge characterization with fast CHERS

Theory and Modeling - Tools

- Core Transport
 - NCLASS neoclassical
 - Gyrokinetic codes (GS2, GYRO, GTC)
 - Predictive TRANSP (GLF23, M-M, NCLASS)
- Edge Transport (diffusive and non-diffusive transport)
 - BAL
 - BOUT
 - UEDGE

Theory and Modeling - Plans

- FY03: Predictive TRANSP using analytic estimates of χ's; validate GK codes in low R/a regime (benchmark); update neoclassical (beam-thermal friction, large ρ/L); non-adiabatic fast ions; edge transport modeling
- FY04: Predictive TRANSP analysis with χ 's from non-linear GK runs; incorporate large ρ^* , β_T , f_T , shaping effects into GK codes; non-linear calcs of CAE mode amplitudes; start to compare turbulence measurements to theory
- FY05: Incorporate ExB, non-local effects in GK; extend theory/exp't comparison of turbulence; start developing anomalous heating models
- FY06-08: Start to develop high-confidence predictive capability; combine with MHD stability to form self-consistent package for integrated scenario development

FY03	04	05	06	07	08	09
IPPA: 5 IPPA: 10						
year						
Confinement scalings Transport & turbulance Underset						
electon & ion heating, low and high beta Boundary transport & beta Local transport & turbulence Low/high k spectra theory/experiment, Io/high beta						standing
turbulence Pedestal charac	V. she	Poloidal flows ar & w/error field χ&ρe		k with heating, CD, ∖		r(r),J _{BS} otimize
MSE CHERS 51 c		Poloidal CHERS	MSE LIF (polarir Fast CF	• •	Trans	port tools
Imaging X-ray		upgrades He bea	m spectroscopy	Liquid Li? CT injection?		
Edge v _{ϕ, τ}	Turbulence of Inita	-	nced F	eedback with MSE, I	neating, CD, rtEFIT	
Li pellets	Error fiel coils				rity injector d state neutral particl	e detectors
Predictive T GS2 linear, r GTC trapped Gyro	d e ⁻ Finite β	lti-Mode) High β jabatic e ⁻			Transpo	ort theory
Neoclassica		ction, potato orbit, hig	gh ρ/L, Β _{ροl} /B _{tor} us heating models		Full predictive tr simulation	