The NSTX Research Program Plan for 2004 – 2008

MHD Research

Presented by J.E. Menard, PPPL for the NSTX Research Team

NSTX Five Year Plan Feedback Forum December 12 – 13, 2002

Overview of presentation

- MHD of highest β_T and β_P (long-pulse) discharges
 - Relevant to IPPA 5 and 10 year goals
- Overview research plans
 - Motivated by recent results
 - Global modes, NTM, ELM, fast ion MHD, RWM, etc.
- Summarize with integrated timeline
 - Discuss yearly progression of research goals
 - Discuss tools for achieving those goals

<u>MHD Goal</u> ⇒ Provide MHD understanding and diagnostics for development of control tools needed to achieve long-pulse, high-β discharges

Achieved $\beta_T = 35\%$, $\beta_N = 6.4$, $\langle \beta_N \rangle = 4.5$

- $\beta_N \approx 6$ achieved for $I_p/aB_{t0} = 2$ to 6.5 MA/mT
- β_N increased 50-100% from previous year
- Recent computations show *ideal no-wall limit* is $\langle \beta_N \rangle \approx 3-3.5$ independent of R₀/a for q* > 1.7
- Many shots have now clearly exceeded this limit

Highest β_T discharges limited by 1/1 modes

- Core becomes n=1 kink unstable
- 1/1 mode degrades β & rotation, slows, locks \rightarrow disruption
- Neoclassical drive possible, but...
 - Modes can decay as β rises

Rotation evolution may dominate:

MHD events in long-pulse discharges:

early n=1, transient at high B_T long-lived n=2 mode in flat-top, NTM? **fast n=1 internal mode disrupts** β residual n=1,2 rotating modes, NTMs?

H-mode profiles increased β_N & β_P limits

- Decreased pressure peaking observed to increase β_N
- Expected for n=1 kink limit

EFIT p(ψ) loosely constrained by electron pressure profile shape to capture variation in pressure peaking • Reached $\beta_P = 1.4$ (× 2.5 higher)

 Reduced mode-locking of 2/1 tearing modes in H-mode

High β obtained with high κ and δ

- β_N increases with increasing elongation
 - β_N degraded for $\kappa > 1.8$ in previous run year

 β_N weak function of δ for $\delta > 0.4$

High β_N achieved at low internal inductance

- $\beta_{\rm N} >> 4 l_{\rm i}$
 - $\beta_{\rm N}$ increasing with lower $l_{\rm i}$ for $l_{\rm i} > 0.6$
 - Will this trend hold at even lower l_i ?
 - NSTX design target has $\beta_N = 8.5$, $l_i = 0.25$

 $\langle \beta_N \rangle$ also >> 4 l_i

• Need more data at lower l_i to define limit

lower l_i achievable with increased κ

Influence of shape and profiles on global stability

- FY2003
 - Further optimize κ and δ in LSN and DND discharges to maximize β_T and β_N
 - Find optimum shape for highest global stability limit compatible with long-pulse
- FY2004
 - First MSE constrained reconstructions early during discharge ramp-up
 - Assess β_N limits as a function of *controllably*
 - Develop and assess stability for q(0) > 2 plasmas if not already naturally occurring
 - Assess low-A and kinetic effects on ballooning stability
- FY2005
 - Characterize J(r) evolution, compare to TSC (and other) models, and benchmark
 - Aid in design controllers for heating and current drive actuators
- FY2006
 - MSE-constrained rtEFITs, first attempts at real-time J(r) control using HHFW, EBW
- FY2003-future
 - Work to develop real-time predictive capability for stability, operate just below limits.

3/2 NTMs often observed in FY2001, β_P limit increased significantly in 2002 (from 0.5 to 1.5)

- SXR data indicates odd-parity mode with inversion radius = 3/2 mode rational surface from EFIT
- Simulated eigenfunction agrees

Neoclassical tearing modes: FY03-05

- FY2003
 - Prepare neoclassical tearing mode codes to more routinely assess mode stability once $q(\psi)$ profile information is becomes available, important for H-mode shots.
 - Implement more accurate wall shape model for wall-stabilized TM stability studies, and begin implementation of simulated Mirnov sensor responses.
- FY2004
 - Measure poloidal mode numbers magnetically utilizing new poloidal Mirnov array.
 - Assess seeding mechanisms for NTMs in various NSTX operating regimes.
 - Investigate non-linear coupling of NTMs of different helicities.
 - Work with MAST NTM experts on NTM similarity experiments
- FY2005
 - Correlate magnetically inferred *m/n* and possibly EBW radiometer.
 - Determine if modes are excited "spontaneously" via proximity to an ideal limit or if seeded directly from other observable MHD modes.
 - Infer island widths from measurements and improved modeling to assess CD needs for EBW CD feedback stabilization of the NTM.

Neoclassical tearing modes: FY06-07

- FY2006
 - Perform preliminary assessment of changes in NTM stability due to global changes in current profile resulting from EBW current drive and electron heating.
 - Assess EBW power requirements for NTM stabilization based on initial measurements of CD efficiency and required CD for mode stabilization.
- FY2007
 - Demonstrate direct NTM suppression with pre-programmed control of launcher and plasma conditions.
 - Verify CD requirements with island suppression measurements and modeling of NTM stabilization physics.
- FY2008
 - Incorporate EBW launcher control into PCS and demonstrate first active feedback suppression of the NTM.

ELM stability sensitive to shape, fueling

- Long pulse H-modes optimized empirically
 - LSN shaping increased while retaining small-ELM edge
- Edge density, collisionality likely impacting edge J_{BS}
- Hypothesize that access to ballooning second stability impacts *n*

amplitude/width of ELM

Edge localized modes

- FY2003
 - Continue to perform experiments to assess impact of divertor configuration, shaping, collisionality, and plasma-wall gaps on ELM stability properties.
 - Characterize pedestal energy loss in various ELMing regimes and secondary destabilization of NTMs and other modes due to ELMs.
- FY2004
 - Commission very high-n array for measurement of ELM toroidal mode numbers.
 - Correlate measured mode numbers with ELM type.
- FY2005
 - Use reflectometer or other high resolution near-edge profile diagnostic to perform preliminary measurements of ELM structure.
- FY2006-2008
 - Using kinetic EFITs with MSE and all available profile information, reconstruct discharges from controlled experiments designed to excite different types of ELMs.
 - Compare ELM stability threshold, mode structure, and toroidal mode numbers to predictions from ELM stability codes such as ELITE, DCON, GATO, or PEST.

Fishbone & TAE can cause fast ion losses

- Neutrons are beam-target; $-\delta S \propto \delta n_{fi}$
- Instabilities are TAE and "fishbones"
- TAE bursts cause initial, fast drop, fishbones later, slower drop.
- Correlation of f.b. and TAE bursts suggests coupling.
- In L-mode, sometimes correlated with D_{α} drops.
- Loss also seen in iFLIP

DIII-D/NSTX TAE Similarity Experiments

- TAEs chirp routinely on NSTX, not true on DIII-D
 - Assess differences in gap or q shear

Fast ion MHD

• FY2003

- Perform CAE (and more TAE) similarity experiments on NSTX and DIII-D
 - Assess role of toroidicity on characteristic frequencies, thresholds, growth rates, etc.
- Assess if fast ion-driven modes play a role in high β_P NSTX internal disruptions
 - Investigate low frequency modes such as fishbone or rTAE (f=20-40kHz)
- FY2004
 - Perform first measurements of CAE and TAE poloidal amplitude distribution and poloidal wavelength with full outboard poloidal Mirnov array
 - Assess role of q profile in determining gap structure for TAE modes (need MSE).
 - Quantitatively correlate fast ion losses (using FLIP) with MHD characteristics
 - Determine the energy of ions preferentially lost.
 - Infer region of distribution function driving instability.

Fast ion MHD (continued)

- FY2005
 - Utilize internal diagnostics including reflectometer, EBW spectrometer, or upgraded bandwidth SXR to measure internal structure of TAE, CAE, and GAE modes.
 - Utilize fluctuation signatures and frequencies to distinguish between modes.
 - Compare to theory and modeling with NOVA, HINST, and HYM (need MSE).
 - Assess if "pitch-angle anisotropy model" can explain drive for instabilities and thus how much energy is available to drive modes.
- FY2004-future
 - Develop beam ion profile diagnostic to determine fast ion pressure profile.
 - Use profile shape in ideal stability calculations, fast ion MHD instability drive
 - Assess influence of fast ion MHD on fast ion population properties
 - neutron rate, power deposition, fast ion angular momentum, etc.
 - Techniques to be considered:
 - neutron collimator (leading candidate)
 - an array of active neutral particle detectors
 - D-alpha light from re-neutralized beam ions.

Fast rotation can modify equilibrium, stability

• Local thermal $M_A \equiv v_{\phi}/v_A$ as high as 0.3 \Rightarrow Maximum density at $R > R_{axis}$ At axis, $R[dlog(n_e)/dR] = 2M_A^2/\beta_{local}$ (includes thermal and fast ions)

M3D Simulations:

- Toroidal flow-shear computed to reduce internal kink growth rates up to factor of 3
- 2-fluid effects & hot particles also stabilizing
 - Contributing to saturation of 1/1 modes at high- β ?

Influence of rotation on equilibrium and stability

- FY2003
 - Begin to include rotation effects in equilibrium reconstructions (EFIT).
 - Assess change in inferred stored energy due to inclusion of v_{ϕ} .
 - Continue to assess shear flow stabilization of core kink modes (M3D).
 - First use of **FLOW** equilibrium code for interpreting experimental data
- FY2004-future
 - Compare fast ion centrifugal force to thermal, and possibly use changes in central gradient to infer changes in fast ion population due to MHD
 - Cross check against beam ion profile diagnostics if available, NPA, FLIP
 - Develop linear stability code based on **FLOW** including anisotropy

Reduced error-field \rightarrow reduced mode locking

Error fields and locked modes

- FY2003
 - Commission internal RWM/EF sensor array electronics.
 - Gather engineering data on primary passive plate positions
 - Calibrate sensors including effects of non-axisymmetric positions.
 - Begin assessment of sources of residual error field such as PF coils, PF coil leads, or passive plate eddy currents.
 - Begin experiments using low density locked modes and beam pulses to determine locking threshold as a function of density, rotation, and proximity to no-wall limit, to check threshold against inferred error field sources.

- Use locking position to aid inference of error field sources.

- FY2004
 - After utilizing internal sensor measurements to infer sources of error field, correct error fields directly where possible through re-alignment.
 - Include findings in RWM power supply current requirements as needed.

Stability analysis finds $\beta > \beta_{no-wall}$ for many τ_E, τ_{wall}

- n=1 no-wall limit $\beta_N = 3.5$ to 4.5 clearly exceeded
- With-wall limit sensitive to p & q profile shapes:
 - Limit lowered by monotonic $q(\psi)$ with q=2 in plasma Limit lowered with increased $p(\psi)$ profile peaking

RWM physics, passive stabilization

• FY2003

- Perform NSTX/DIII-D/MAST similarity experiments designed to investigate aspect ratio dependence of RWM stability physics and no-wall stability boundaries
- Investigate role of finite amplitude unstable RWMs in modifying rotation
- Using MARS code, perform preliminary theoretical assessment of expected critical rotation frequency for RWM stabilization in NSTX and associated scalings with beta, safety factor profile, and shaping

• FY2004

- Use equilibria with MSE to assess role of $q(\psi)$ in RWM stability, rotation damping
- Begin benchmarking codes against measurements
 - Example: In regimes where RWM is passively unstable above the no-wall limit, benchmark codes such as DCON+VALEN and/or MARS+VACUUM used in predicting RWM structure, growth-rate, and frequency, against measurements from the internal RWM/EF magnetic sensor set.

• FY2005-future

- Using experimental results and comparison to theory, assess rotation required for stabilization of RWM in long-pulse high- β operating regimes.
- Use knowledge gained to test active feedback stabilization physics in regimes with low rotation speed and to project to future ST devices.

Each primary plate will measure B_{\perp} and B_{P}

Thermocouple connectors allow easy installation and upgrade potential (PnP)

- Full toroidal coverage
 - 24 B_{\perp} and 24 B_{P}
 - Each 12 above, 12 below
- B_{\perp} measured by single - turn loop
 - Embedded in tiles
 - Centered in plate
- B_P measured at ends of primary plates
 - Glass insulated Cu wire wound on macor forms
 - SS304 shields

Active RWM stabilization: FY03-05

See next talk by S. Sabbagh for more details: physics & feedback system

- FY2003
 - Finalize designs of "strawman" active coil sets using DCON+VALEN analysis.
 - Decide on either internal or external coil set, and design it.
 - Initiate procurement of power supplies
 - Should simultaneously correct error fields and provide fast feedback for RWM control.
- FY2004
 - Procure, install, and commission active coil set.
 - Specify, procure, and commission active coil supplies.
 - Purchase and install DAQ for PCS
- FY2005
 - Complete interface of supply controls to PCS.
 - First use of active feedback on RWM and EF, algorithm optimization

Active RWM stabilization: FY06-08

- FY2006
 - In regimes where RWM is passively unstable above the no-wall limit, develop feedback algorithms to stabilize the RWM up to the ideal-wall limit.
 - Develop techniques to control rotation speed independent of beam heating power to decouple rotation from β .
 - Flow damping from non-resonant error field excitation using active coils and/or controlled error field amplification of the RWM are possible means.
 - Use non-resonant error fields to modify NTM island formation.
- FY2007-future
 - Utilize RWM/EF feedback to operate close to ideal-wall limit in optimized longpulse discharges.
 - Generate stochastic divertor boundary with non-axisymmetric coils
 - Assess impact on edge profiles and divertor heat flux in long-pulse

SUMMARY GOAL: Provide MHD understanding and diagnostics for development of feedback on shape, β, J(r), RWM, EF, & NTM, using rtEFIT, heating, RWM coils, and CD to achieve high-beta, long-pulse operation with good MHD stability properties.

