

Facility Status and Plans

M.G. Bell PPPL

For the NSTX National Team

DOE Review of NSTX Five-Year Research Program Proposal June 30 – July 2, 2003

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL** PSI **SNL UC Davis** UC Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington U Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching **U** Quebec

Designed to Study High-Temperature Toroidal Plasmas at Low Aspect-Ratio

Experiments started in Sep. 99

Achieved Parameters							
Aspect ratio A	1.27						
Elongation κ	2.2						
Triangularity δ	0.8						
Major radius R ₀	0.85m						
Plasma Current Ip	1.5MA						
Toroidal Field B _{T0}	0.6T						
Solenoid flux	0.7Vs						
Auxiliary heating & c	current drive:						
NBI (100kV)	7 MW						
RF (30MHz)	6 MW						
CHI	0.4MA						
Pulse Length	1.1s						

Operational Periods Are Very Productive

Operational log of last 5 weeks of FY'02 run

Week	<u>Monday</u>	<u>Tuesday</u>	<u>Wednesday</u>	<u>Thursday</u>	<u>Friday</u>					
May 6 – 10	XP-3831Triangularity scan $\beta_T = 31\%$	XP-216 40 External Kink	XP-202 33 RWM	XP-223 33 Effect of ρ* & rotation	XP-214 36 HHFW-Fast Ion Interactions					
May 13 – 17	XP-224 38 Edge turbulence	XP-204 38 Effect of T _e on NBI heating	XP-218 43 HHFW current drive	XP-22122Stability at low liXP-209IW gas H-mode (extended shift)	XP-227 40 ELM study					
May 20 – 24	XP-22636Bootstrap current	XP-21836HHFW currentdrive	XP-22338Effect of ρ* & rotation	MP-24 7 rt-EFIT commissioning	MP-24 16 rt-EFIT commissioning					
May 27 – 31	Holiday	Mainte	enance	Ne glow calib'n Boronization 15						
June 3 – 7	- XP-228 36 ISTP 11 Long pulse high I _p 0.6T TF comm. 100kV NBI		XP-21841HHFW currentdrive	XP-223 18 Effect of ρ* & rotation	XP-20827CAE stability					
		XP-229 19 Long pulseH-mode (extended shift)		XP-220 12 High stored energy W = 390kJ	XP-21517H-mode threshold (extended shift)					
June 10 – 14	XP-22014High stored energy	XP-22346Effect of ρ* & rotation	XP-21714Edge charact'n	XP- 21023Wall Mode Study	XP-217//Edge charact'n					
	XP-21824HHFW current drive24	MP-24 3 rt-EFIT comm. rt-EFIT control demonstrated	XP-22018High stored energy $\beta_T = 35\%$	XP-217 13 Edge charact'n (extended shift)	XP-229 17 Long pulse Hmode 1s, 0.8MA pulse					
	Boronization 16	(extended shift)		MP 8 Gauge calib'n						
June17 – Sep 30	Outage									

- ~800 shots in 25 days
 - 20 experiments
 - $-B_{T} = 0.6T$
 - $-P_{NBI} = 7MW$
 - $-W_{tot} = 0.39MJ$
 - $\beta_{T} = 35\%$
 - 1s pulse
 - rtEFIT control

Neutral Beam Injection System Has Been Workhorse of High-β Research

MGB / 5-Year Review / 030701

Feedback Control of NB Power

- Upgrade NB control system for pulse-width modulation of sources (FY'04)
- Data links to/from Plasma Control System computer
 - Source status to PCS
 - Source permissive signal from PCS
- Feedback control of β
 - $-\beta$ obtained from rt-EFIT analysis of magnetic data
- Provide NB "notching" for diagnostics, *e.g.* CHERS

HHFW System Provides Flexible Auxiliary Power for Heating and Current Drive

- 12-element antenna for 6MW coupled power at 30MHz
 - Well within capability of the 6 RF sources
- Real-time phase control of straps demonstrated

 $- \mathbf{k}_{tor} = \pm (4 - 14) \text{ m}^{-1}$

 Observed effective electron heating in FY'00 and first indications of current drive in FY'02

MGB / 5-Year Review / 030701

Technical Aspects and Upgrades of HHFW

- Phase feedback system works well
 - Phases set to arbitrary waveforms between shots
 - Now developing algorithms for real-time feedback
- Power limited to < 3MW through FY'02 run
 - Found evidence of arcing in feedthroughs
 - Modified center conductors to reduce electrical stress
- Better performance in brief FY'03 experiments
- Feedback to maintain antenna coupling planned for FY'04
- Upgrade to symmetric end-fed design in FY'05, if needed
 - Increase power by factor 4 at constant voltage

Improvements Have Been Made to Address Technical Problems for CHI Experiments

- Arcs across absorber insulator limited pulse length
 - Installed new absorber insulator and coils after FY'02 run
- Flashovers in external circuit due to large dl_{CHI}/dt
 - Moved transient suppressors closer to injector gap
- Noise pick-up in magnetic diagnostics prevented adding CHI to inductive plasmas
 - Have now improved shielding, grounding and signal processing for magnetic sensors

New CHI Absorber Insulator Designed to Resist Arcing Installed in FY'02

Insulator on high-field side

- Plasma entering absorber flows towards lower field
- Arc path longer and more tortuous
- Indications from FY'03 that arcs are suppressed
- Added coils to null poloidal field across absorber gap
 - UWash developing a power supply for these
 - Install in FY'04 if needed

MGB / 5-Year Review / 030701

Additional Power Supplies Will Provide Alternative Non-Solenoid Startup

- Use PF5, PF4, PF3, PF2 to get poloidal flux and poloidal field null
 - ~0.15Wb available at ~1m radius
 - Possibility for > 100kA
 - Meets requirements for breakdown with adequate preionization
 - Provide power supply for PF4 coils (FY'04) $\frac{\widehat{E}}{N}$ of
 - Reverse unipolar PF5 supply for initial tests
 - If successful, provide PF5 bipolar capability
- Also investigate JT-60U non-solenoid scheme
 - Proposal from U. Tokyo collaborators

Poloidal flux contours at time of breakdown

Electron Bernstein Waves Can Provide Localized Current Drive in Advanced Scenarios

- EBW can drive localized current in "overdense" plasmas
 - Supplement bootstrap current and stabilize NTMs
- Requires mode-conversion of coupled EM wave to EBW
 - Characteristics of edge plasma are critical
 - Small L_n at conversion layer
 - Investigating with emission measurements in NSTX
 - Including local edge profile modification
 - Valuable input from CDX-U and MAST EBW programs

3MW EBW System Proposed

- Calculations show ~3MW (delivered) EBW power can provide control needed for advanced scenarios in NSTX
- ~15GHz for $\rm f_{ce}$ and Doppler-shifted $\rm 2f_{ce}$ absorption
- Develop ~1MW gyrotron sources (FY'04 05)
 - Collaboration with MIT, VLT
 - Possible vendor CPI
 - Adaptation of existing technology
- Steerable mirror launcher and low-loss waveguide
- Up to 1MW (1 tube) in FY'06 3MW (4 tubes) in FY'07

Active Control of Resistive Wall Modes

- RWM identified in plasmas above the wall-stabilized β -limit
 - Amplifies non-axisymmetric field errors
 - Field errors greatly reduced by PF5 realignment in FY'02
- Install 6 external "picture frame" correction coils in FY'04
 - Operate as 3 opposing pairs with Switching Power Amplifiers
- Experiments to counteract error field amplification in FY'04
 - Planned in 21-week run
- Active RWM feedback in FY'05
- Assess need for installing internal control coils in FY'06

Modifying PF1A Coils Can Produce Higher Triangularity at Higher Elongation

- Higher triangularity δ ~ 0.8 at elongation κ > 2 desirable
 - MHD benefit mainly through higher toroidal current for fixed q
- Moving PF1A coils further from midplane or splitting coils gives greater shaping capability
 Using outer half of PF1A coils
 - Moving coils simpler but range of shapes limited
 - Split coils give more flexibility
- Increase benefit to stability by realigning secondary passive stabilizers closer to boundary –
- Assess trade-offs, design in FY'04
- Install in FY' 05 opening

High-Field-Side Gas Injection Improved Both Reproducibility and Longevity of H-mode

- HFS injector gives large initial flow then continuing lower flow
 - contributes to density rise
- Later, less reliable transition with same flow from LFS
- More controllable HFS injector installed on CS upper shoulder for FY'03
- Injectors planned for other poloidal locations in FY'04

• New fueling methods may provide means to advance physics MGB / 5-Year Review / 030701

Solid Pellets and Supersonic Gas Injection Will Enhance Fueling Capabilities

- Injector for room-temperature solids now in development for installation this year
 - Lithium, boron, carbon as pellets or micro-pellet ensembles
 - 20 400 m/s with up to 8 pellets/shot
- Supersonic gas injector being developed with CDX-U and M&AE Dept. for installation this year

– Up to 6×10^{21} D in 300ms at ~1.8km/s

- Deuterium pellet injector proposed for installation in FY'05 in collaboration with ORNL
 - Multiple pellets/shot capability
 - Initially outside mid-plane launch through pump duct
 - Upgrade to guided *inside* launch in FY'06

Investigate Both Fueling and Momentum Effects with Compact Toroid Injector

- CT injector used on Tokamak de Varennes available to NSTX
 - Collaboration with University of Washington
- High field gradient of ST well suited to CT injection
 - Variable fuel mass and deposition location
- Provide momentum injection (≡50ms of 1MW NBI)
 - Induce H-modes (STOR-M, TdeV) or ITBs
 - Transport studies by isotopic impurity tailoring
 - Prompt density injection to avoid locked modes
- Conduct off-line testing (FY'05–6)
 - UWash to investigate development of multi-shot capability
- Install on NSTX in FY'07

Improved Treatment of Plasma Facing Components Benefited Physics Studies

- Boronizaton routinely applied since Sep. '00
 - Glow discharge (~2 hr) in mixture of deuterated trimethyl boron (CD₃)₃B ("TMB") [10g], He [90% by vol.]
 - After bakeout & every 2 weeks of operation (19 times)
- Full bakeout capability introduced in Mar. '02
 - Center column to 350C
 - Outer PFCs to 320C (heated by high-pressure helium)
- Immediate benefits in terms of
 - reduced flux consumption
 improved H-mode access
 - Iower impurities
 • reduced MHD activity
- Investigate boronization *during* bakeout and daily, or betweenshots, boronization in FY'04

Propose Two Methods for Coating Plasma Facing Components with Lithium

- Demonstrated benefit of coating carbon limiter in TFTR
 - Strong edge pumping (reduction of recycling)
 - Improvement of energy confinement (×2)
- 1. Lithium pellet injection (FY'04)
 - Use multiple pellet capability
 - Could also investigate other materials (e.g. B)
- 2. Lithium evaporator (FY'05)
 - CDX-U developing modular e-beam evaporator
 - Use several evaporators to cover NSTX divertor
 - Benefit from CDX-U research to optimize substrate material
 - Possible change from carbon PFCs in FY'07

Divertor Cryo-Pump Can Provide Needed Density Control

- Proven technique
- Requires adequate conductance from neutralization region
- Two schemes being evaluated for FY'05 installation
- **1. Behind secondary plates**
- Suitable for $\delta \le 0.5$
- Requires plate relocation

- 2. Shield on inner divertor
- Suitable for δ ~ 0.8
- Installation on center stack

Upgrade of Divertor Tiles May Be Needed for Long-Pulse Operation at High Power

- Present divertor tiles of ATJ graphite
- Limit surface to 1200C to avoid radiation-enhanced sublimation ⇒ "carbon blooms"
- Measurements indicate tiles adequate for 3s at full NB + HHFW power
- Investigate heat-flux mitigation techniques in FY'04-5
 - Strike-point sweeping
 - Enhanced divertor radiation
- Assess need for material upgrade to be installed FY'07
 - Options include CFC, refractory metals, possibly combined with lithium coating
 - Decision will benefit from accumulated experience of CDX (Li), C-Mod (Mo) and ASDEX (W)

Liquid Lithium Surface Module Will Address Important Reactor Issues

- Development under aegis of ALIST group of VLT
- A potential solution for both power and particle handling
 - Tantalizing possibilities for advanced regimes
 - Liquid Li tray in CDX-U dramatically reduced recycling

- Modules ~1m² close to plasma
- Flow liquid Li at 7 12 m/s to avoid evaporation at full power
- Installation in FY'08

Proposed Upgrades Build Steadily on Solid Research to Create a Vibrant Program

	Research Areas of Interest					Development/Installation							
Upgrade		Transport	MJHH	EBW	CHI	Boundary	Integration	FY 03	FY04	FY05	FY 06	FY07	FY08
Auxiliary Systems													
Absorber field null control					\checkmark								
NB power modulation	\checkmark	\checkmark					\checkmark						
PF power supply upgrade	\checkmark		\checkmark				\checkmark						
HHFW antenna end-feed			\checkmark										
EBW system, 1MW	\checkmark	\checkmark		\checkmark									
EBW system, 3MW	\checkmark	\checkmark		\checkmark			\checkmark						
MHD/Error Field Control													
RWM sensors & detection	\checkmark						\checkmark						
Active mode-control	\checkmark						\checkmark						
PF1A coil modification	\checkmark					\checkmark	\checkmark						
Passive stabilizer relocation	\checkmark						\checkmark						
Fueling, Power and Particle Control													
Li/B pellet injector		\checkmark				\checkmark	\checkmark						
Supersonic gas injector		\checkmark				\checkmark	\checkmark						
Lithium wall coating	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
Divertor cryo-pump		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
D pellet injector (LFS)		\checkmark				\checkmark	\checkmark						
D pellet injector (HFS)		\checkmark				\checkmark	\checkmark						
CT injector		\checkmark				\checkmark	\checkmark						
Divertor long-pulse upgrade						\checkmark	\checkmark						
Liquid Li surface module	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark						

MGB / 5-Year Review / 030701