

Integration and Plasma Control

D. A. Gates, M. G. Bell PPPL

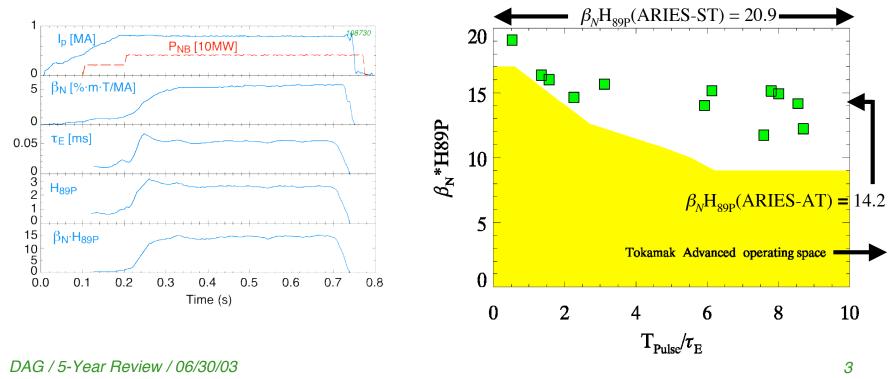
For the NSTX National Team

DOE Review of NSTX Five-Year Research Program Proposal June 30 – July 2, 2003

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL** PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington U Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching **U** Quebec

IPPA & FESAC Have Established Ambitious Goals for NSTX

• IPPA goal 3.2.1.6:


"integrate high confinement and high beta"

- FESAC 5-year Objective #2.1
 - "...assessing high-beta stability, confinement, self-consistent high-bootstrap operation, and acceptable divertor heat flux, for pulse lengths much greater than energy confinement times"
- Each component represents a challenge in itself
- Integration requires accommodating competing discharge requirements
 - Achieving compatibility of conditions for long pulse will be particularly challenging

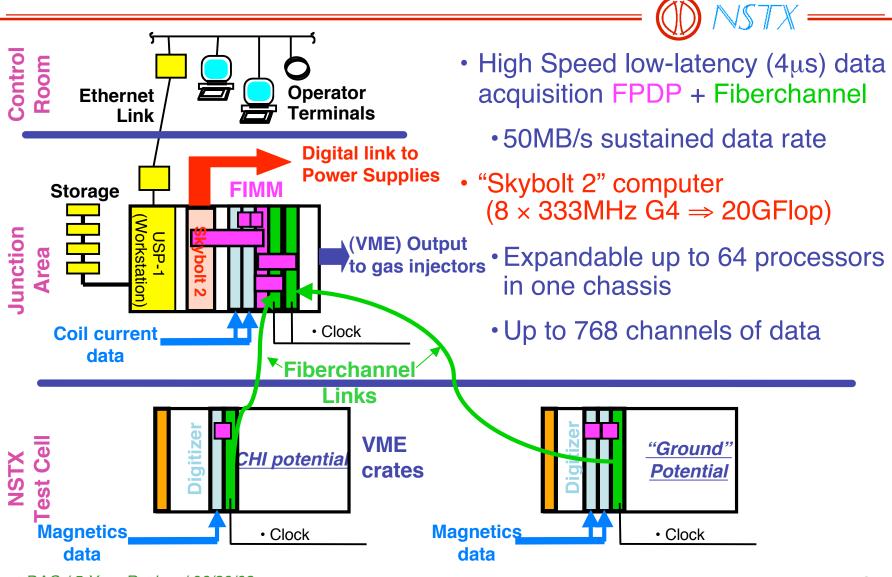
Considerable Progress Achieved Towards Goal of High β and τ_{E}

- During 2002, NSTX achieved in a discharge
 - $-\beta_N \approx 6\% \cdot m \cdot T/MA$
 - $-\tau_{\rm E} \approx 50$ ms, H_{89P} ~ 2.5

- duration ~400ms ~ $8\tau_{\rm E}$ ~1.7 τ_{skin}

Advanced Plasma Control Necessary for Achieving "Integration Goals"

• Equilibrium


– I_p , R_p , Z_p , κ , δ , stabilizer gaps

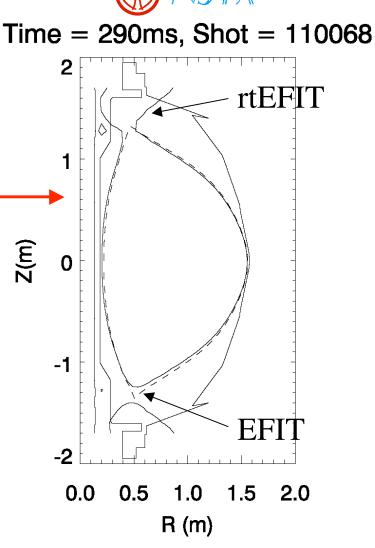
- Heating and current drive
 - $P_{NBI,} R_{NBI}, P_{HHFW}, k_{II}, [J(r)], [EBW coupling]$
- Fueling and density control
 - gas [supersonic], pellets, [edge pumping]
- Instabilities
 - Vertical, β , error fields and RWM, NTM
- Edge power and particle fluxes
 - Divertor strike point sweeping, edge density, divertor density, divertor radiation, [lithium module]

Elements of Control

- Diagnostics
 - Configuration, profiles (p, v_{ϕ} , J), instabilities, fluxes
- Real-time processing
 - Equilibrium, stability limits, mode structure, driven current
- Actuators
 - Coils & power supplies, NBI, HHFW, [EBW], CHI, fueling, pumping
- Telemetry
 - Fast, flexible, expandable data communication

Control System Hardware

DAG / 5-Year Review / 06/30/03


2004 – 2005: Control of Plasma Shaping and Heating Power

- highest β with $\kappa \approx 2.0$, $\delta \approx 0.8$
 - $\kappa \approx 2.5$ transiently
 - higher κ facilitates high β at high f_{bs}
- full control with rtEFIT during '03 run 2004
- Develop routine feedback control for shape $(\kappa, \delta, gaps)$ with rtEFIT analysis
- Investigate prospects for higher κ

2005

- Upgrade control for higher κ
 - faster power supply link may be required
- Feedback control of NB power to control β

2005 – 2008: Inclusion of Profile Data in Real-Time Equilibrium Analysis

Status rt-EFIT has operated with only magnetic data

- inclusion of profile data will substantially increase utility of analysis \Rightarrow **profile control**
- *2005* 1) Include MPTS data for p_e (*c.f.* offline EFIT)
 - expand real-time diagnostic data acquisition
 - 2) Initiate real-time estimate of stability limit based on I_i , F_p
- 2006 Include MSE-CIF polarimetry data
- 2007 Include MSE-LIF IBI data
- 2008 Develop accurate real-time stability assessment

2004 – 2005: Control for Resistive Wall Modes

- Status RWM growth inferred from development of kinklike perturbations for β above no-wall limit and rapid slowing of plasma rotation
- 2004 Detailed measurements of RWM structure with newly installed set of B_r, B_p pickup coils
 Installation of RWM control coils (B_R) and power supplies
 - null "average" B_R perturbation with preprogrammed currents
- 2005 Implement feedback control to counteract mode drag and maintain plasma rotation

2003 – 2005: Control for Coaxial Helicity Injection

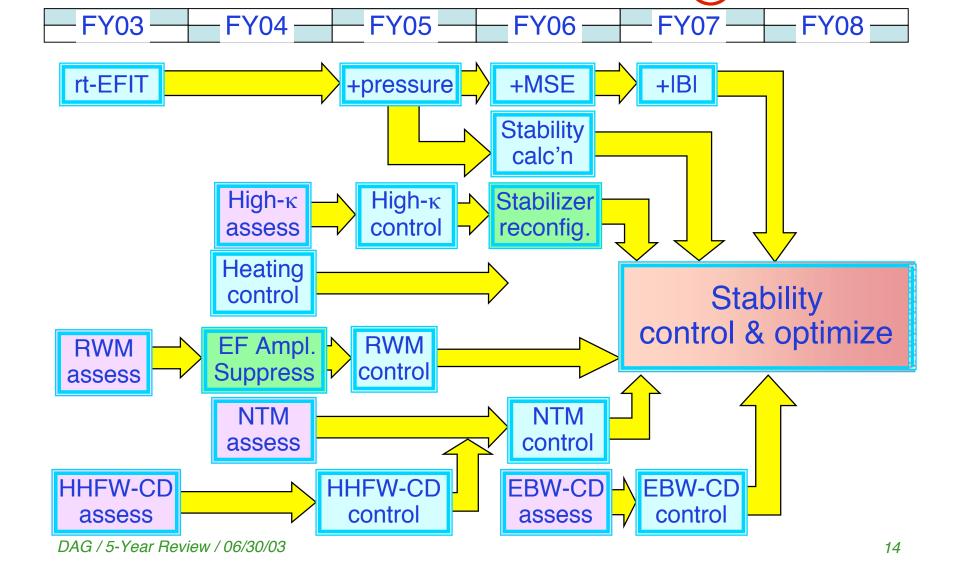
- Status 400kA toroidal current in 300ms discharge
 - Preprogrammed currents no feedback control
 - FY02 absorber arcs terminated most discharges
 - New absorber insulator and nulling coils in 2002 opening
- 2003 1) Preliminary assessment of new absorber insulator and need for local field control in absorber
 - 2) Began assessment HIT-II "forced reconnection" scheme
- 2004 Feedback control of I_p , R, Z of CHI plasma to
 - promote reconnection
 - diagnose profiles and MHD activity

2005 Implement absorber field null control, if needed DAG / 5-Year Review / 06/30/03

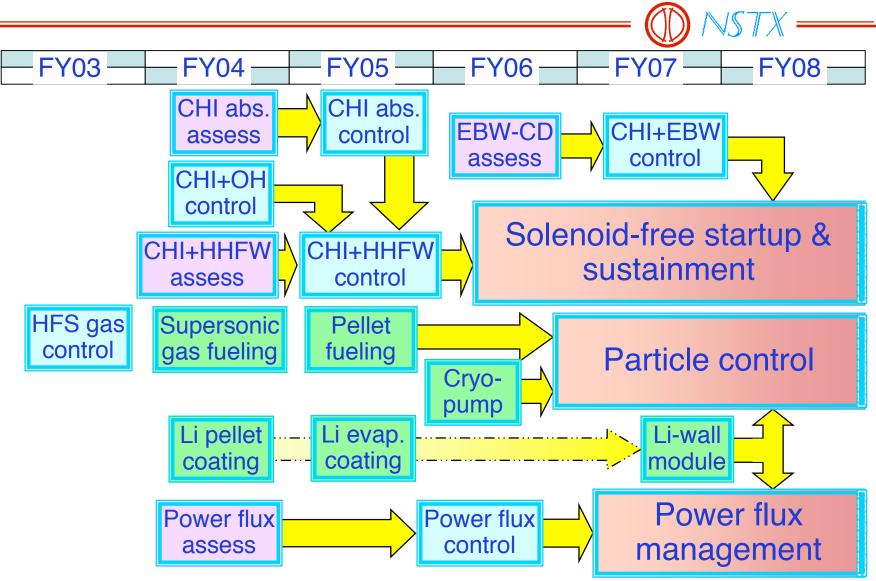
2004 – 2008: Control of Neoclassical Tearing Modes

- *Status* NTMs identified at high β_P with $q_{min} < 3/2$
 - But not seen in recent high β_P plasmas with higher q_{min}
 - Expect control through localized current drive
- 2004 Assess conditions for and impact of NTMs–Develop NTM detection & localization methods
- 2005 Develop control of HHFW-CD \Rightarrow NTM avoidance
- 2006 Assess EBW for localized current drive Use EBW for controlling NTMs
- 2007 Feedback on EBW-CD for NTM control

2003 – 2009: Integrating Techniques for Particle & Power Flux Management


- Status Continuous density rise during H-mode
 - Divertor heat fluxes probably acceptable for 2s but marginal for 5s pulses at full power
- 2003 Control of new HFS gas injector
- 2004 Control supersonic gas injectorAssess density control with Li pellet coating
- 2005 Install & control deuterium pellet injector Assess density control with Li evaporation crucible
- *2006-7* Integrate and assess cryo-pump Strike-point control for power flux mitigation

2009 Density control with lithium wall module DAG / 5-Year Review / 06/30/03


2005 – 2008: Integrating Techniques for Solenoid-Free Startup & Sustainment

- Status Indications of HHFW-CD, ~100kA @ 2 MW
- 2005 Integration and control of HHFW-CD with CHI Assess PF only startup
- 2006 Solenoid-free ramp-up
- 2007 Integration and control of HHFW and EBW-CD with CHI initiation
- 2008 Demonstration of fully non-inductive startup & sustainment with increasing pulse length

Integration & Control Builds on Progress in Facility, Diagnostics & Topical Research

Integration & Control Timeline (2)

Summary

- NSTX has already made excellent progress on IPPA integration goals
 - Control system development key to completing these objectives
- Aggressive control development strategy touches every aspect of the ST integration problem
- Utilization of high-speed parallelized real-time computation enables innovative physics based solutions to plasma control
 - Much more will be possible in the near future (processor speed has more than tripled since present computer was purchased!)