

Transport and Turbulence

Stanley M. Kaye PPPL, Princeton University

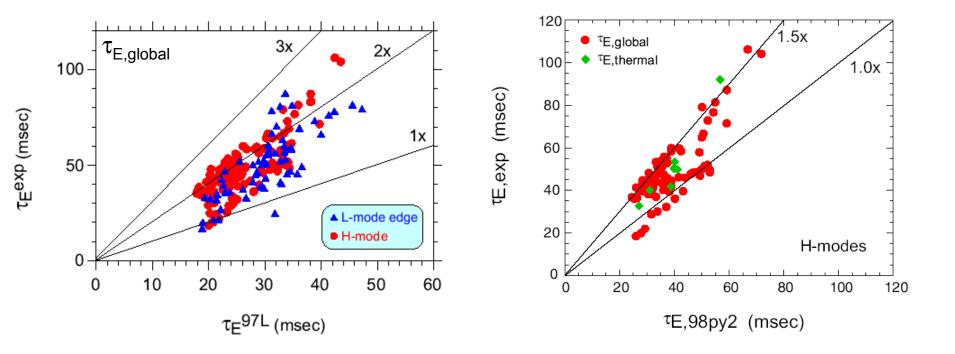
For the NSTX National Team

DOE Review of NSTX Five-Year Research Program Proposal June 30 – July 2, 2003

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL **PSI SNL** UC Davis **UC Irvine** UCLA UCSD U Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching **U** Quebec

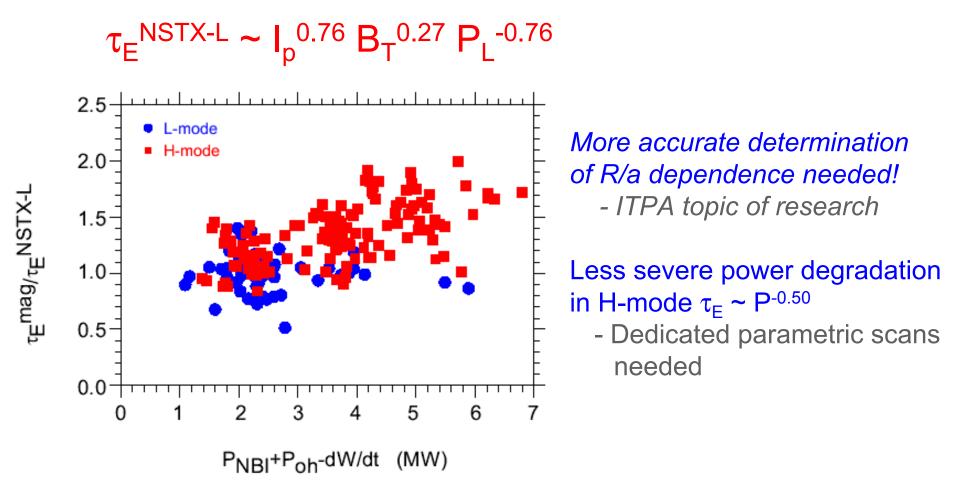
Outline

Experimental studies


- Major accomplishments and observations
- Core transport (global, ions, electrons, momentum, particle/impurity, fast ions)
- Edge transport and fluctuations
- Theory and modeling
- Research plan elements

 Facility and diagnostic upgrades

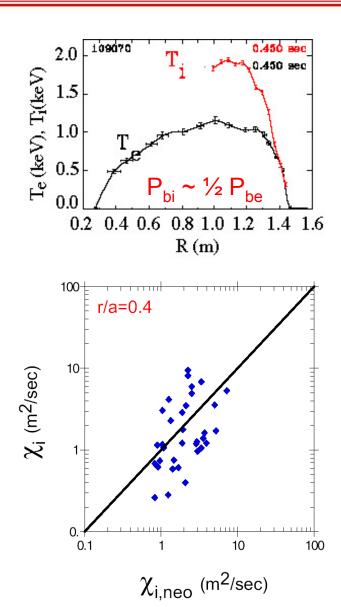
Major Transport Accomplishments and Observations


- Global confinement enhanced over values given by conventional R/a scalings
- Ion transport low
 - Near neoclassical
 - Consistent with impurity injection results
 - Gyrokinetic codes indicate ITG/TEM modes suppressed in NBI discharges
- Electron transport dominates
 - e⁻ confinement can be improved ITBs
 - Unique opportunity to study short- λ modes and e⁻ transport without presence of long- λ modes
- Unique class of fast ion collective modes that may affect transport
 - Source for stochastic ion heating?
- Convective transport at edge may be significant

Global Confinement Exceeds Predictions from Conventional Aspect Ratio Scalings

- Quasi-steady conditions
- τ_{E,global} from EFIT magnetics reconstruction
 Includes fast ion component
- $\tau_{\text{E,thermal}}$ determined from TRANSP runs

NSTX NBI L-modes Exhibit Similar Parametric Scaling as Conventional Aspect Ratio Devices

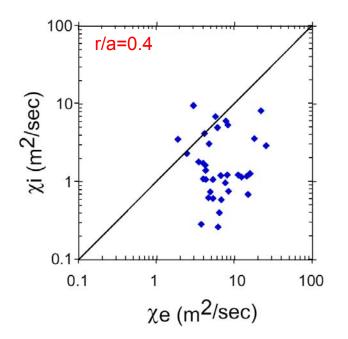

Global Scalings Are Manifestations of the Underlying Transport Physics

<u>Plans</u>

- Establish parametric dependencies on engineering variables (FY04)
 - H-mode
 - RF vs NBI
 - Submit additional data to ITPA confinement database
- Perform dimensionless scalings [β_t , ρ^* , R/a] (FY05)
- Establish role of rotation, E_r , q(r) on τ_E (FY06)

- Collaborative studies
 - Similarity experiments with DIII-D, MAST
- Rotation control and diagnosis
 - Error field correction coils
 - Edge spectroscopy, CHERS, Poloidal CHERS
 - MSE

$T_i > T_e$ during NBI Indicates Good Ion Confinement



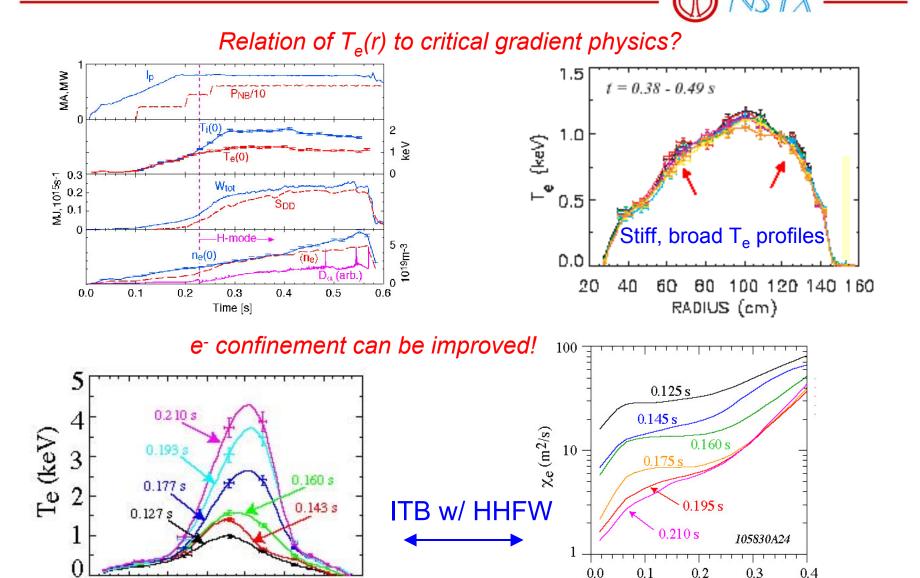
ITG suppressed (GK calculations)

- Electrons dominate transport loss

Regions of χ_i <0 now limited to edge

- Additional atomic physics in data reduction
- Other effects (e.g., high f_t leading to in-out asymmetry) being assessed

Assess Role of Long- λ Turbulence on Ion Transport


<u>Plans</u>

- Establish baseline of ion heat fluxes, χ_i
 - Test role of ITG by varying key parameters [T_i/T_e, n_e(r), ω_{ExB}] (FY04)
 - Establish effect of rotational shear on transport (FY04-05)
 - Isolate neoclassical pinch terms (FY05)
 - Relate transport fluxes to changes in q(r), E_r , η_i , β' (FY05-06)
- Relation of transport to long- λ fluctuations (FY06)
- Experiment/gyrokinetic theory comparisons (ongoing)
 - Develop predictive capability

- Rotation control and diagnosis
 - Error field correction coil
 - Co- vs counter-injection
 - RF vs NBI
 - Edge spectroscopy, CHERS, poloidal CHERS, fast edge spectroscopy

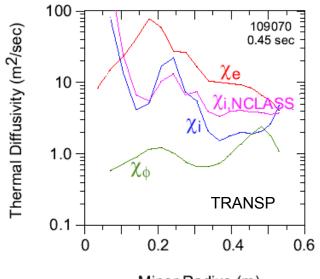
- Profile control and diagnosis
 - RF vs NBI
 - Deuterium pellet injector
 - MSE
- Fluctuations
 - Microwave imaging reflectometry

Electrons Are Primary Loss Channel In NBI Due To ITG/TEM Suppression

r (m)

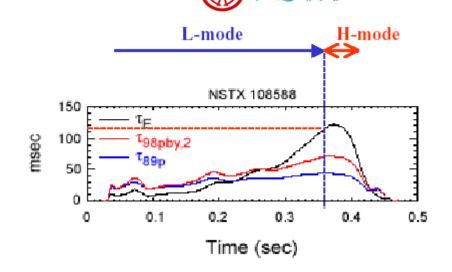
NSTX Provides Unique Opportunities to Study Electron Transport

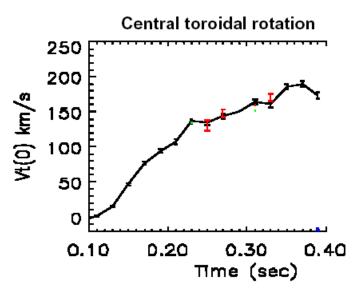
<u>Plans</u>


- Improve electron transport
 - Develop reliable methods to generate ITBs (FY04)
- Assess role of ETGs/Establish link to critical gradient physics
 - Vary T_i/T_e , η_e , β' (FY04-06)
 - Effect of flow shear (FY05-06)
- Relation of transport to short- λ fluctuations (FY05-06)
 - ETG modes are measurable
- Experiment/gyrokinetic theory comparisons (ongoing)

- Profile control and diagnosis
 - NBI vs RF (HHFW/EBW, CW/Modulated)
 - Deuterium pellet injector
 - MSE
 - MPTS upgrade

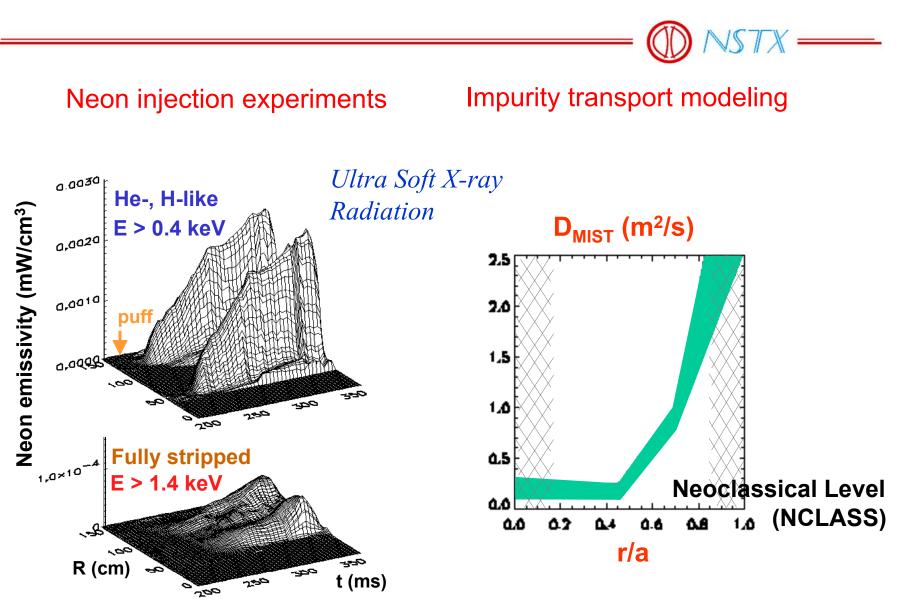
- Rotation control and diagnosis
 - Error field correction coil
 - RF vs NBI, Co- vs counter-injection
 - Edge spectroscopy, CHERS, poloidal CHERS, fast edge spectroscopy
- Fluctuations
 - High spatial resolution microwave scattering


Momentum Fluxes Reflect Underlying Transport Physics


• Inferred momentum transport low $(\chi_{\phi} < \chi_{i} \le \chi_{neo}) - \text{consistent with}$ ITG/TEM suppression

Minor Radius (m)

 Temporal increase of τ_E associated with temporal increase of rotation (causality?)


Study Momentum Transport to Understand Processes Controlling Heat Transport

Plans

- Establish momentum flux dependencies and controlling physics
 - Vary input torques (FY04)
 - Extensive experiment/gyrokinetic, neoclassical theory comparisons (ongoing)
- Use flow/flow shear to control transport
 - ITBs (FY04-05)
 - L-H transitions (FY04-05)
 - Understand rotation/confinement causality (FY06-08)
- Study zonal flows (FY07-08)

- Rotation control and diagnosis
 - Error field correction coil
 - RF vs NBI
 - Co- vs counter-injection
 - MSE
 - Edge spectroscopy, CHERS, poloidal CHERS, fast edge spectroscopy

Impurity Transport Near Neoclassical in Core

Establish Relation Between Impurity/Particle Transport and Heat Transport

<u>Plans</u>

- Perturbative and non-perturbative impurity transport exp'ts (FY04)
- Perturbative particle transport studies (FY05-06)

- Regular and supersonic gas injectors
- Li/B pellet injector
- Deuterium pellet injector
- USXR, Transmission grating spectrometer, PIXCS X-ray camera

Fast Ion Confinement and Collective Effects are Fundamental Issues for Next Step Devices (including ITER)

<u>Results</u>

- Decay of neutrons consistent with classical slowing down
- Loss rate measurements disagree with modeling (trend and magnitude)
 - Developing a more detailed, diagnostic-localized model

<u>Plans</u>

- Establish overall confinement trends (FY04)
- Study transient effect of non-ambipolar losses on transport barrier formation (FY04-05)
- Use beam-target neutrons as probes for power deposition profile (FY05-06)

- Co vs counter-injection
- Fast particle diagnostics
 - FLIP
 - Neutron collimators
 - Solid-state particle detectors
- MSE
- Full orbit and guiding center codes

Understand Edge Transport and Relation to Core

Results

- L-H threshold conditions differ from those at conventional R/a
- Convective-cell ("blob") transport significant
- Fluctuation radial correlation lengths related to τ_{E}

<u>Plans</u>

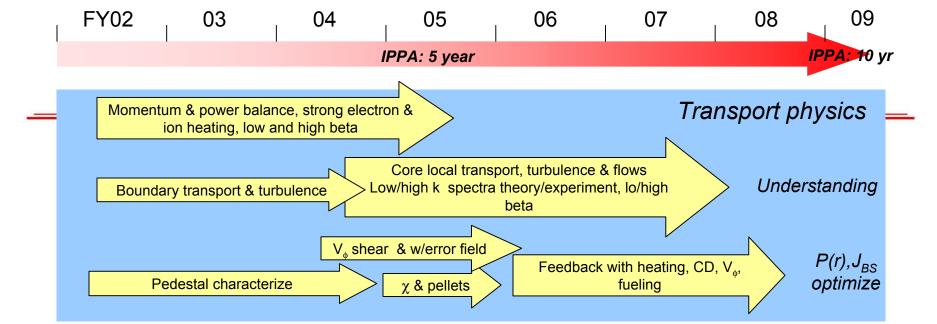
- Study role of E_r on L-H transitions (FY04-05)
- Assess low and high-k turbulence (FY04-06)
 - Radial correlation lengths
 - Convective-cells
- Active modification of edge transport to change core transport (FY04-08)

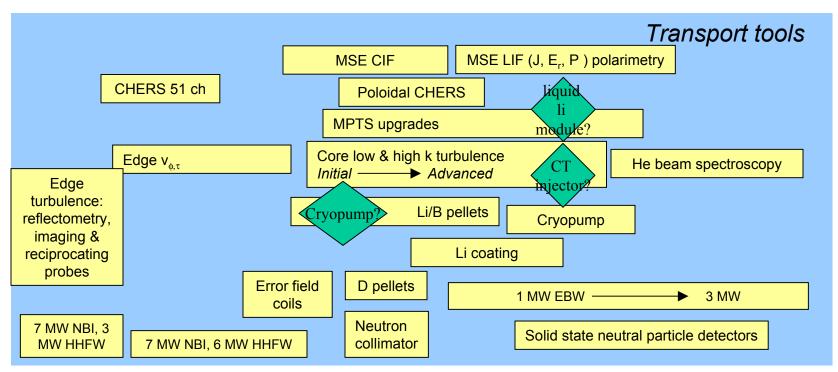
- Edge characterization
 - GPI, reflectometry, scattering
 - MPTS upgrade
 - MSE
 - Fast edge spectroscopy, He beam spectroscopy

- Edge control techniques
 - Co vs counter-injection
 - SOL biasing via CHI
 - CT injection
 - Li coating
 - Cryopump

NSTX Operating Space Challenges Theory Frameworks

ST Features


- Near unity β in core
- Large f_t , ρ_i/L , ρ_{fast}/a
- Large ω_{ExB} , $v_{fast}/v_{Alfvén}$


- Core transport
 - NCLASS, GTC-NEO neoclassical
 - Gyrokinetic codes (GS2, GYRO, GTC) and FULL
 - TRANSP in predictive mode (GLF23, Multi-mode, NCLASS)
- Edge transport (diffusive and non-diffusive models)
 - BAL
 - BOUT
 - UEDGE
 - DEGAS2

Extensive Benchmarking with Experiment Will Lead to Further Theory Development

<u>Plans</u>

- Adapt neoclassical theory to ST parameter regime
 - Beam-thermal ion friction particle and heat pinches (FY03-04)
 - Large ρ /L: ST + ITB at conventional R/a (FY03-04)
 - Exp'tl tests of neoclassical theory if ITG/TEM suppressed (FY05)
- Extension of gyrokinetic turbulence-induced transport theory
 - Large ρ^* , β_T , f_t , shaping effects, e⁻ dynamics (FY04-05)
 - Non-linear calculations (FY04-05)
 - Incorporate non-local effects (FY05-06)
 - Comparison of measured/predicted turbulence levels (FY04-08)
- Develop stochastic heating models (FY05-07)
- Develop high-confidence predictive capability
 - χ 's from empirical models (FY04)
 - χ 's from gyrokinetic turbulence, neoclassical models (FY04)
 - Full heating scenarios (FY06-07)
 - Combine with MHD stability (FY7-08)

Transport_TL_030617

NSTX Transport Goals Geared Towards Determining the Attractiveness of the ST and Contributing to Toroidal Transport Physics

- Establish key τ_{E} and transport dependencies
 - e⁻ vs i⁺ transport, dependence on ρ^* , β_T , ω_{ExB}
- Assess roles of low- and high-k turbulence in transport and heating
- Assess fast ion confinement
 - Influence on neoclassical, turbulent transport and heating
- Determine influence of $E_r (\omega_{ExB})$ on turbulence, L-H
- Establish theoretical basis for transport/heating in ST
 Extensive theory/experiment benchmarking

Use knowledge gained to control plasma transport Produce p(r), j(r), for optimal high τ_E , β_T , non-inductive current