

MAJOR FACILITY GOALS ACHIEVED ON SCHEDULE

Major NSTX Milestones	Planned	Achieved
Commence First Plasma ¹	Apr. 1999	Feb. 1999
Achieve 1 MA OH Discharges ²	Sept. 2000	Dec. 1999
Commence CHI Operations	Sept. 2000	Sept. 2000
Commence HHFW Operations	Sept. 2000	Oct. 2000
Commence NBI Operations ³	Oct. 2000	Sept. 2000
High β near no-wall limit (~25%)⁴	Sept. 2002	June 2001

¹ NSTX Construction (~\$24M) completed on budget and schedule; received NJ Governor's safety award on the construction project.

² The plasma current capability further increased to 1.5 MA in June 2001.

³ NBI construction project (~ \$6M) completed on schedule and on budget.

⁴ Followed by the achievement of $\beta_T \sim 35\%$ in June 2002.

NSTX FACILITY OPERATED ~ 90% AVAILABILITY

	FY 00	FY 01	FY 02	FY 03	FY 04 - 08
Run weeks planned	15	15	12	12	21
Run weeks achieved	15	~16	13	4	
Hours of operations	600	640	520	160	840
Average shots/week	104	116	118	80	

• High operational availability (~90%) maintained while ramping up the facility and diagnostic capability (and sophistication.)

• While the TF joint failure was an unfortunate event, the newly designed TF joint should significantly improve operational reliability needed to achieve the five year plan - 21 run weeks per year.

• Total FY 00-03 run weeks achieved 48 weeks compared with the planned 54 weeks.

• ISM (Integrated Safety Management) culture emphasized; N.J. Governor's safety awards in 2001 and 2002.

• Cost of a spare OH solenoid budgeted in FY 04-05.

NSTX Planned Facility/Diagnostic Upgrades Support the Exciting Research Program for FY 04 - 08

Diagnostic and Facility Upgrades are Proposed to Support Research Plan

Diagnostics	Facility
MHD	Very High β
– EBW radiometer, fast ΔT_e	 Ex-vessel field and mode control coils
 MSE/CIF, LIF polarimeter [Nova] 	[CU]
Transport & Turbulence	- Modification of PF1A (k=2.6, δ =0.6)
 High & low-k μ-wave scattering [UCLA, 	 Active mode control systems [CU]
UCD]	CD, MHD, Integrated Scenarios
 μ-wave imaging reflectometer [UCD] 	 – EBW (1→4 MW source power) [VLT,
 – GPI – Planar LIF edge fluctuations [C- 	MIT, ORNL]
Mod, DIII-D, Nova, PSI, SBIR]	Startup
Edge & Divertor	– EBW
 Divertor laser Thomson scattering 	 CHI absorber control coils
Astrophysics & Diagnostic	 Outboard PF-only induction
Development	Particle & Edge Plasma Control
 X-ray imaging crystal spectrometer 	– Cryopumps
[LLNL, Chandra, C-mod, KSTAR, Adv. Diagnostics Program]	 Lithium pellets, coating, flowing surface module [VLT-PFC, CDX-U]

BUDGET ESTIMATE ASSUMPTIONS

- 21 weeks per year operations estimated are based on past operational experiences.
- The proposed 5 year budget is ~ 10 % above the FY 04 presidential level for both PPPL and collaborators; relatively flat for future years.
- Upgrade cost is estimated bottom-up where possible, with contingency based on experience.
- Avoided strong front loading of upgrades:
 - implementations timed to match the program plan.
 - consistent with personnel availability

We made some tough choices.

FY 03 - FY 08 NSTX BUDGET OVERVIEW

	FY03	FY04	FY05	FY06	FY07	FY08
Facility Operations	\$16,539	\$18,264	\$18,645	\$19,024	\$19,728	\$20,458
Research	\$9,034	\$9,947	\$10,091	\$10,465	\$10,852	\$11,289
Facility Upgrades	\$388	\$3,650	\$4,250	\$3,550	\$3,150	\$500
Diagnostics Upgrades	\$739	\$1,628	\$1,636	\$1,453	\$1,110	
Collaborator Interface	\$619	\$579	\$559	\$525	\$526	\$527
Collaboration Total	\$4,300	\$5,032	\$5,142	\$5,332	\$5,530	\$5,734
TOTAL	\$31,619	\$39,101	\$40,324	\$40,348	\$40,896	\$38,508
						,

FY 03 - FY 08 NSTX PPPL FTE OVERVIEW

	FY03	FY04	FY05	FY06	FY07	FY08
PPPL Facility Operations	70.6	72.0	72.0	72.0	72.0	72.0
PPPL Research	30.7	32.7	32.7	32.7	32.7	32.7
PPPL Facility Upgrades	1.5	4.3	6.5	6.7	3.0	0.7
PPPL Diagnostics Upgrades	2.5	4.9	4.4	5.2	3.6	
PPPL Collaborator Interface	2.7	3.0	2.3	2.1	2.1	2.1
TOTAL	108.0	116.9	117.9	118.7	113.4	107.4

• The NSTX PPPL staff level is relatively flat at 110.

PPPL FACILITY OPERATIONS BUDGET

			(_X
					/ W
FACILITY OPERATIONS: 21 run w	eeks per year				
	FY04	FY05	FY06	FY07	FY08
Torus Systems	\$304	\$310	\$322	\$334	\$346
NBI	\$3,101	\$3,155	\$3,273	\$3,395	\$3,522
Machine Operations	\$3,150	\$3,204	\$3,324	\$3,448	\$3,577
FCPC	\$1,413	\$1,404	\$1,457	\$1,511	\$1,568
MG/AC Power	\$1,026	\$1,046	\$1,085	\$1,126	\$1,168
Data Acquisition	\$1,010	\$1,028	\$1,067	\$1,107	\$1,148
Central I&C	\$785	\$799	\$828	\$859	\$892
Plasma Control	\$446	\$455	\$472	\$489	\$508
Energy	\$1,107	\$1,148	\$1,191	\$1,236	\$1,282
Construction Support	\$1,107	\$1,124	\$1,166	\$1,209	\$1,255
RF Operations	\$1,691	\$1,722	\$1,786	\$1,853	\$1,922
Diagnostic Operations	\$1,527	\$1,555	\$1,613	\$1,673	\$1,736
Spares	\$200	\$200	\$200	\$200	\$200
OH Spare	\$200	\$300			
ERWM Allocations	\$1,196	\$1,196	\$1,240	\$1,286	\$1,333
			. ,		
Total	\$18,264	\$18,645	\$19,024	\$19,728	\$20,458

• Essentially inflation adjusted flat budget.

• Budgeted for spare OH solenoid.

• Anticipated savings from NCSX parallel operation in FY 08 not included.

RESEARCH BUDGET

PPPL RESEARCH	FY04	FY05	FY06	FY07	FY08
International Collaborations	\$285	\$233	\$242	\$250	\$260
Physics Analysis	\$3,608	\$3,686	\$3,822	\$3,964	\$4,110
Theory	\$622	\$636	\$659	\$684	\$709
Research Operations	\$4,955	\$5,059	\$5,246	\$5,441	\$5,642
ERWM-Allocations	\$478	\$477	\$495	\$513	\$532
Total	\$9,947	\$10,091	\$10,465	\$10,852	\$11,253

Collaboration Research	FY04	FY05	FY06	FY07	FY08
Collaboration interface support	\$579	\$559	\$525	\$526	\$527
Collaboration	\$5,032	\$5,142	\$5,332	\$5,530	\$5,734

Collaborations research contributes strongly to diagnostics.

• EBW upgrade collaboration opportunities not included.

FACILITY UPGRADES BUDGET

* In collaboration with VLT

4 MW EBW UPGRADE BUDGET In collaboration with ORNL, MIT, GA, VLT, Industry

- EBW System: 4 x 1 MW tube at 15 GHz to deliver 3 MW in plasma
- EBW tube developed in collaboration with VLT/MIT/Industry
- Cost effective with existing NBI 120 keV power supply and utilities at PPPL
- 1 MW tube capability to be available in FY 06
- Significant collaboration/industry opportunities

	FY 04 PPPL	Coll/ Indust	FY 05 PPPL	Coll/ Indust	FY 06 PPPL	Coll/ Indust	FY 07 PPPL	Coll/ Indust	FY 08 PPPL	Coll/ Indust	Total Cost
EBW Facility	530		600		500		220		100		1950
Solid State Regulator				800		800					1600
I MW Tube R&D		700		700							1400
Production tubes						750		1500			2250
											0
Launcher,waveguide, etc.				300		600		800			1700
											0
TOTAL	530	700	600	1800	500	2150	220	2300	100	0	8900

EBW System Budget (\$k)

Total budget	\$ 8,900k
PPPL	\$1,950k
Collaboration/industry	\$6,950k
 VLT role (~ \$400k) is crucial for th 	e tube development.

Plasma Diagnostic Plan: Strong Collaboration Contributions

		Research Areas of Interest					Development/Deployment						
Upgrade	Institution	OHM	Transport	МЭНН	EBW	CHI	Boundary	Integr'n	FY03	FY04	FY05	FY06	FY07
Additional magnetics	PPPL/Columbia	\checkmark		\checkmark		\checkmark							
CHERS upgrade	PPPL	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							
Imaging x-ray crystal*	PPPL												
EBW antenna with local limiter*	PPPL				\checkmark								
Fast lost-ion probe	PPPL	\checkmark	\checkmark										
MSE/CIF (10ch / 19ch)	NOVA	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark					
Additional x-ray cameras *	JHU/PSI	\checkmark				\checkmark							
FIReTIP upgrades	UC Davis	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark						
Line-filtered cameras	PPPL/ORNL												
Tangential microwave scattering	PPPL/UC Davis												
MPTS (30ch / 90Hz / 40ch)	PPPL			\checkmark	\checkmark	\checkmark							
Fast reciprocating probe	UCSD				\checkmark								
Horiz. divertor bolometer	PPPL												
Microwave backscattering	UCLA												
Edge Doppler upgrade	PPPL					\checkmark							
Deposition monitors	PPPL												
Poloidal CHERS	PPPL												
MSE/LIF*	NOVA	\checkmark				\checkmark							
Planar LIF visualization*	NOVA/PSI	\checkmark											
Neutron collimator	PPPL												
Langmuir probe upgrades	PPPL/ORNL												
Divertor visible spectrometer	PPPL												
Fast IR camera	PPPL/ORNL					\checkmark							
Vertical divertor bolometer	PPPL							V					
Imaging reflectometer	PPPL/ UC Davis												
Helium-jet spectroscopy	PPPL							V					
Divertor reciprocating probe	UCSD												
Charged fusion product det'r	PPPL	\checkmark											
Divertor Thomson scattering	PPPL												
Divertor UV spectrometer	PPPL												
Energy extract analyzer	PPPL												

* Innovative Diagnostic Initiatives

PPPL DIAGNOSTIC UPGRADES CRUCIAL ELEMENTS OF 5 YEAR RESEARCH PLAN

DIAGNOSTIC UPGRADES	FY04	FY05	FY06	FY07	FY08 TOTAL
Boundary Physics Diagnostics					
CS&Divertor Probe Arrays		\$90	\$54	\$36	\$180
Divertor Bolometers	\$105	\$165			\$270
IR and Filtered Cameras	\$126	\$54		\$54	\$234
Divertor/Edge Spectroscopy		\$350	\$150	\$150	\$650
Divertor Thomson Scattering			\$340	\$400	\$740
Gridded Energy Analyzer			\$125	\$125	\$250
Deposition Monitor	\$75				\$75
Profile Diagnostics					
MPTS Upgrades	\$350	\$200	\$350		\$900
Edge Rotation Upgrade	\$160				\$160
Poloidal CHERS	\$250	\$250			\$500
Energetic Particle Diagnostics					
Neutron Collimator	\$100	\$240			\$340
Charged Fus Prod Detect			\$130		\$130
Transport / turbulence diagnostics					
Tangential Scattering for high k	x \$342				\$342
Impurity Injector				\$225	\$225
Imaging Reflectometry		\$167	\$184		\$351
MHD					
Additional Fast Magnetics & DA	AS \$120	\$120	\$120	\$120	\$480
Total	\$1,628	\$1,636	\$1,453	\$1,110	\$5,827

14

The NSTX 5-Year Plan is an Exciting and Cost-Effective Element of the U.S. Fusion Energy Science Program

Quality and Relevance are High

- Research facility and integrated national research team are both world class
- Forefront scientific results and innovative plans in all key areas:
 - Stability, Transport, Startup and Sustainment, Boundary, Integrated Scenarios
- Plans are directly aligned with FESAC IPPA goals
- Collaboration across a broad frontier:
 - ICC's, Tokamaks, Astrophysics, Fusion Technology
- Contributes to ITPA
- Providing scientific basis for attractive CTF and Demo

Facility Operation and Upgrades are Cost Effective

- Three NJ Governor's Safety Awards
- 90% availability, average of 112 shots per operational week since FY 01
 - Thorough plan to fix TF joints and avoid future losses of run time
- Innovative facility and diagnostic upgrades support each area of research
 - PPPL NSTX upgrade costs average 10.5% of total budget over five year period
- Total proposed yearly budget about 10% above FY2004 President's request