

🔘 NSTX

<u>NSTX 5 Year Research Plan 2004–08</u> <u>Global Mode Stabilization Strategy</u>

S.A. Sabbagh Columbia University

For the NSTX National Team

DOE Review of NSTX Five-Year Research Program Proposal June 30 – July 2, 2003

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL **UC Davis** UC Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching U** Quebec

<u>Research Aims to Study Global MHD Instabilities in</u> the ST and Methods of Stabilization at High β

Motivation

- Conducting walls can stabilize global modes in a rotating plasma
- Resistive wall mode (RWM) can heavily damp rotation
- Active mode control at low rotation may be needed for reactors

Goals

- Explore, analyze, and document high β equilibria and β-limiting MHD phenomena in the spherical torus
- Study passive stabilization and define requirements for active control of β limiting global modes leading to an active feedback stabilization system

Present research born from successful, long-term plan to operate, study, and stabilize high β ST plasmas Tools Between-shots Established High β Equilibria (1999-2000) magnetics EFIT \Box Established boundary shapes, $\beta_t \sim 18\%$, $\beta_N = 3.1$ DCON, between Established No-wall β Limit (2000-2001) shots partial **□** First H-mode: $\beta_t = 25\%$, $\beta_N = 4.3$, $\beta_N/I_i = 6$ kinetic EFIT Established Passive Stabilization (2001-2002) VALEN, control □ Reduced error field: $\beta_t = 35\%$, $\beta_N = 6.5$, $\beta_N/l_i > 9.5$ room DCON, Establish Active Stabilization (2004-2008) - EFIT with Suppress error field amplification (EFA) toroidal rotation (being tested) Stabilize resistive wall mode, rotating plasma - MSE Stabilize resistive wall mode, "static" plasma resistive DCON - kinetic effects Global Mode Stabilization Strategy - S.A. Sabbagh

Plasma operation in low I_i, wall-stabilized space

Analysis plan addresses 5-Year IPPA MHD Goal

5 Year FESAC (IPPA Report) MHD Science Goal

- Develop detailed predictive capability for macroscopic stability, including resistive and kinetic effects
 - Progress measured by the <u>level of agreement</u> between predicted and observed stability regimes and by <u>improvements in the</u> <u>stability of operating confinement devices</u>
- Physics analysis closely couples theory and experiment
 - Between-shots, quantitative equilibrium reconstruction with kinetic profile information
 - Serves NSTX operations as well as physics
 - Quantitative, time-evolved ideal stability analysis in control room
 - Correlate with rotation damping, β collapses
 - Generating adequate statistics
 - > 1e5 equilibria with Thomson; > 4e3 stability cases run
 - Standard input to further analysis
 - VALEN, MARS, M3D, RF codes, etc.
- Planned upgrades quantitatively address analysis needs

Plasma stabilized above no-wall β_N limit for 18 τ_{wall}

- Core rotation frequency $F_{\phi}(0)$ recovers as $\beta_N >> \beta_{Nno-wall}$
 - $\square B_t \ge 0.43T$
 - EFIT $q_{min} > 2$
- Plasma approaches with-wall β_N limit
 - VALEN growth rate becoming Alfvénic
- Passive stabilizer loses effectiveness at maximum β_N
 - Neutrons collapse with β_N - suggests internal mode

Studying passive stabilization and RWM physics in ST

• FY2003-04

- Continue investigation of unstable RWMs in modifying rotation
 - Compare non-resonant vs. resonant rotation damping theories, aspect ratio dependence
- Perform initial theoretical assessment of expected critical rotation frequency for RWM stabilization in NSTX and dependence on beta, q profile, shaping, V_A
 - Coordinate research with complementary DIII-D results
- Perform investigation of RWM dissipation theory comparison to experiment
- Conduct NSTX / DIII-D similarity XP to investigate aspect ratio dependence of RWM induced rotation damping, critical rotation frequency

• FY2004

- Use equilibria with MSE to assess role of q in RWM stability and rotation damping
- Compare theoretical and experimental mode structure using internal sensors
 - n=2 RWM presently computed unstable attempt to measure it
- Begin benchmarking stability codes against measurements in (β_N , V_{ϕ} space)

• FY2005-future

- Using experimental results and comparison to theory, assess rotation required for stabilization of RWM in long-pulse high-β operating regimes.
- Use knowledge gained to test active feedback stabilization physics in plasmas with low rotation speed and to project to future ST devices.

RWM stabilization research follows a logical timeline

Exterior control coil chosen for initial feedback system

- Decision based on time, budget, risk constraints balanced by performance
- System with 80Hz driving frequency may sustain 72% of with-wall β-limit
- Initial system plan (1 Transrex + 1 SPA supply) has 6.8kA*turns (Applied B_{edge}= 19G @ 80Hz)

Global Mode Stabilization Strategy – S.A. Sabbagh

VALEN (J. Bialek)

Active mode control physics design effort moving on to feedback modeling

Evaluating and implementing active feedback for global MHD

• FY2003

- Finalized physics design of active coil sets using DCON+VALEN analysis
- Decided on external coil set and began engineering design
- Initiate procurement of power supplies
- Commission internal RWM/EFA sensor array electronics

• FY2004

- Procure, install, and commission initial active coil set and active coil supplies
- Purchase and install DAQ for PCS; reduced bandwidth capability to suppress EFA

• FY2005

- Complete interface of supply controls to PCS
- Active feedback on RWM at full capability of coil, algorithm optimization

• FY2006

- **D** Maintain high β plasmas with plasma rotation below the critical rotation frequency
- Determine options required for high frequency mode stabilization (e.g. internal coil)
 - Possibly modify NTM island formation

• FY2007-future

- Utilize RWM feedback to operate close to ideal-wall limit in long-pulse discharges
- Assess impact of stochastic divertor boundary on edge profiles / divertor heat flux

Access to $\beta_N = 8$ conceptual design target exists

$$F_p = p(0) /$$

- Pressure peaking factor, F_p, close to existing EFIT experimental reconstructed value
- Need to maintain elevated q_{min} as I_p is increased

Research aims to fulfill the long-term plan of high β plasma stabilization in the ST

Progress

A four year effort has yielded the tools, experimental data, and initial physics understanding of passively stabilized, high β ST plasmas

Future

 \square Implement hardware to stabilize global modes and sustain high β

- With plasma rotation above RWM critical rotation frequency:
 - Use initial feedback system to suppress EFA with external control coil
 - Attempt RWM stabilization with external coil
 - Assess need for optimized control coil options
- Repeat study with plasma rotation below RWM critical rotation frequency
- Expand physics analysis as needed to couple theory to experiment

