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Research Aims to Study Global MHD Instabilities In
the ST and Methods of Stabilization at High 3

® Motivation
Conducting walls can stabilize global modes in a rotating plasma
Resistive wall mode (RWM) can heavily damp rotation
Active mode control at low rotation may be needed for reactors

® Goals

Explore, analyze, and document high 3 equilibria and (-limiting
MHD phenomena in the spherical torus

Study passive stabilization and define requirements for active
control of B limiting global modes leading to an active feedback

stabilization system




Present research born from successful, long-term plan
to operate, study, and stabilize high 3 ST plasmas

Tools

* Established High B Equilibria (1999-2000) qutgmeeetﬂfgﬁ
Established boundary shapes, B, ~ 18%, [, = 3.1
DCON, between

¢ Established No-wall 3 Limit (2000-2001) shots partial
First H-mode: 3, = 25%, By =4.3, B/l = 6 kinetic EFIT

® Established Passive Stabilization (2001-2002) \,r; en control
Reduced error field: 3, = 35%, B, = 6.5, B/l > 9.5 room DCON,

® Establish Active Stabilization (2004-2008) - EEIT with
Suppress error field amplification (EFA) toroidal rotation
Stabilize resistive wall mode, rotating plasma (Ii)/IeSirI]Eg tested)
Stabilize resistive wall mode, “static” plasma - resistive DCON

- kinetic effects
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Plasma operation in low |, wall-stabilized space
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® Normalized beta, (3, = 6.5, with 3,/ = 9.5; 3, up to 35% over B ,.uai
® Toroidal beta has reached 35% (B, = 2p,<p>/B,?)
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Analysis plan addresses 5-Year IPPA MHD Goal

5 Year FESAC (IPPA Report) MHD Science Goal

Develop detailed predictive capability for macroscopic stability,
Including resistive and kinetic effects

® Progress measured by the level of agreement between predicted
and observed stability regimes and by improvements in the
stability of operating confinement devices

® Physics analysis closely couples theory and experiment

Between-shots, quantitative equilibrium reconstruction with kinetic
profile information

® Serves NSTX operations as well as physics

Quantitative, time-evolved ideal stability analysis in control room
¢ Correlate with rotation damping, B collapses

Generating adequate statistics
® > 1e5 equilibria with Thomson; > 4e3 stability cases run

Standard input to further analysis
® VALEN, MARS, M3D, RF codes, etc.

® Planned upgrades guantitatively address analysis needs




Rotation damping rate Iarqer when BN > By nowwall
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® Rotation damping is global; rate is ~ 6 times larger when By > By no-wal
® RWM signal weak in present experiments: improved sensors for next run




Plasma stabilized above no-wall 5 limit for 18 T

wall
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Studying passive stabilization and RWM physics in ST

® FY2003-04
Continue investigation of unstable RWMs in modifying rotation
® Compare non-resonant vs. resonant rotation damping theories, aspect ratio dependence

Perform initial theoretical assessment of expected critical rotation frequency for
RWM stabilization in NSTX and dependence on beta, q profile, shaping, V,

® Coordinate research with complementary DIII-D results
Perform investigation of RWM dissipation theory comparison to experiment

Conduct NSTX / DIII-D similarity XP to investigate aspect ratio dependence of
RWM induced rotation damping, critical rotation frequency

® FY2004

Use equilibria with MSE to assess role of g in RWM stability and rotation damping

Compare theoretical and experimental mode structure using internal sensors
® n=2 RWM presently computed unstable - attempt to measure it

Begin benchmarking stability codes against measurements in (B, V, space)

® FY2005-future

Usin? experimental results and comparison to theory, assess rotation required for

stabilization of RWM in long-pulse high-3 operating regimes.

Use knowledge gained to test active feedback stabilization physics in plasmas
with low rotation speed and to project to future ST devices.




RWM stabilization research follows a logical timeline

FYO02 03 04 05 06 07 08 09
Optimize passive stability Optimize stability with active tools
1

Global mode stability optimization vs. J(r), P(r), plasma shape

RWM/wall RWM passive stability, EFA & RWM active control, rotation control,
interactions rotation damping physics stability at low V,,

Magnetics (including fast), Magnetics upgrades, MSE CIF
SXR i

HoEGe Internal RWM R.W il el
mode install /
colls SNl commission Active control system mods

based on experimental
RWM RWM Spec and results and theory (e.g.
control control Install RWM internal coiland n =2, 3
physics coil design control power upgrade)
design supplies

D NSTX
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Active control computed to sustain 94% ideal wall 3 limit

VALEN model of NSTX

(cutaway view)
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Modeled active feedback coils

= 5-1; BNwaII =6.9

computed to reach 50% of By ai

reach 72% of By yai
® Control coils among passive plates

® EXx-vessel control coils computed to

® Equilibria have Byno.wall



Exterior control coil chosen for initial feedback system

Applied Bg,,.(G) / control coil current
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Control coil current (A)

Active mode control physics design effort moving on

to feedback modeling
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Evaluating and implementing active feedback for global MHD
® FY2003

Finalized physics design of active coil sets using DCON+VALEN analysis

Decided on external coil set and began engineering design

Initiate procurement of power supplies

Commission internal RWM/EFA sensor array electronics

® FY2004
Procure, install, and commission initial active coil set and active coil supplies
Purchase and install DAQ for PCS; reduced bandwidth capability to suppress EFA

® FY2005
Complete interface of supply controls to PCS
Active feedback on RWM at full capability of coil, algorithm optimization

® FY2006
Maintain high (3 plasmas with plasma rotation below the critical rotation frequency

Determine options required for high frequency mode stabilization (e.g. internal coil)
® Possibly modify NTM island formation

® FY2007-future
Utilize RWM feedback to operate close to ideal-wall limit in long-pulse discharges

Assess impact of stochastic divertor boundary on edge profiles / divertor heat flux




Access to 3, = 8 conceptual design target exists
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Research aims to fulfill the long-term plan of high 3
plasma stabilization in the ST

® Progress

A four year effort has yielded the tools, experimental data, and
Initial physics understanding of passively stabilized, high 3 ST
plasmas

® Future

Implement hardware to stabilize global modes and sustain high 3

® With plasma rotation above RWM critical rotation frequency:
Use initial feedback system to suppress EFA with external control coil
Attempt RWM stabilization with external coil
Assess need for optimized control coil options

® Repeat study with plasma rotation below RWM critical rotation
frequency

Expand physics analysis as needed to couple theory to experiment




