

The Alcator C-Mod Program - and Plans for AT Scenario Development

NSTX Five Year Planning Forum June 24-26, 2002 Princeton Plasma Physics Laboratory

Presented by Paul Bonoli MIT Plasma Science and Fusion Center, for the C-Mod team

Program Structure

Unique Aspects and Strengths of C-Mod \Rightarrow Address Key Questions

 Unique long pulse capability (relative to skin and L/R times) in highly shaped, diverted plasma; B > 4 T

 \rightarrow Quasi-steady lower hybrid driven AT scenarios

- High performance, compact, high field capability
 → Address issues for compact, high-field ignition approaches
- Exclusively RF driven
 - Heating decoupled from particle sources
 - No external momentum sources
 - \rightarrow Reactor-relevant regimes for Transport, MHD, AT studies
- Unique dimensional parameters, but comparable to larger tokamaks in dimensionless parameters
 - Key points on scaling curves
 - Test sensitivities to non-similar processes (radiation, neutrals, etc.)
- Very high scrape-off layer power density (~1 GW/m²)
 - Unique divertor regimes, reactor prototypical
- Advanced materials (also reactor prototypical)
 - Unique recycling properties; generic MFE challenge

Burning Plasma Support Research

Develop and Validate Physics Basis for Tokamak Burning Plasma Experiments

Develop and Demonstrate Scenarios for BPX Optimization

- High Priority Topics
 - H-Mode Pedestal Physics
 - Threshold; Pedestal height; Edge relaxation mechanisms
 - Particle and power handling at high plasma and power densities
 - RF physics and technology (ICRF, Lower Hybrid): heating, current drive and plasma control
 - Shape and topology (δ , κ , SN/DN/Lim)
 - Sawtooth and NTM stabilization
 - High-current disruptions

EDA H-Mode

Main goals of the AT physics program

- 1. Current profile control via LHCD, at reactor-relevant densities.
- 2. Understanding, control and sustainment of **Internal Transport Barriers**, with $T_e \sim T_i$ and without momentum input.
- Use non-inductive current drive (LHCD and bootstrap) to extend pulse length to near steady state (5 sec, 4-6 τ_{CR})
 divertor power handling and wall particle issues.
- 4. Increase β to MHD limit, and maximize through profile optimization, possibly stabilization.

Program involves all physics areas (RF, transport, divertor, MHD) and has broad participation from the C-Mod team.

Profile Control Tools

"The crucial distinguishing feature of an Advanced Tokamak over a conventional tokamak is ...the use of active control of the current or shear profile, and of the pressure profile or transport characteristics" (AT Workshop, GA, 1999)

Tools available or *under development*:

- Current profile:
 - Lower Hybrid Current Drive. (Phase I 2003. Phase II 2005).
 4 MW, 4.6 GHz, 2 launchers with independent phasing, N_{//}.
 - Mode Conversion Current Drive. (on-axis, tests 2002-3)
 - Bootstrap current drive via pressure profile control.
- Density profile.
 - Control of core transport, peaking.
 - Cryopump controls edge source. (2004)
 - D₂ and Lithium pellet injectors.
- Temperature Profiles
 - 8 MW ICRH, 40-80 MHz, 2 independently variable deposition locations.
 - 4 MW LHCD.
 - Control of core transport via RF deposition, *magnetic shear*.
- Shear Flow MC flow drive.

Lower Hybrid Current Drive system

Alcator

C-Mod

LH hardware preparation well advanced

• RF sources, power supplies, WG being prepared by MIT.

- 12 Klystrons (3 MW) have been tested and installed in C-Mod cell.

• First LH expts summer 2003

- LH Coupler and splitter are being fabricated by PPPL
 - Many components in-house.
 - Testing of grill modules in progress.
- Delivery to MIT March 2003

Research Highlights

Internal Transport Barriers

- ITB's are routinely triggered by off-axis ICRH, at r/a ~0.5.
- Core barriers co-exist with edge pedestal (EDA H-mode.)
- Also seen in *ohmic H-mode*.
- Reversed shear not needed.

Stable conditions were reached for ~15 τ_E , through addition of modest on-axis ICRH. *We can control the degree of transport within the barrier!*

Barriers are formed with heating on high *or* low field side.

Scenarios tested: Resonance Location (r/a) 4 -0.2 0.0 0.2 0.4 -0.6 -0.4 4 F= 80 MHz, B=4.5 T 3 F= 70 MHz, B=3.8 or 5.4 T $V_{\rm Tor}$ (10⁴ m/s) 2 70 MHz Same condition $r_{res}/a = \pm 0.5$ ۲ 0 **Toroidal Rotation** in all cases. – With HFS heating at 80 2.2 MHz, used 70 MHz core 2.0 Ж **Density Peaking** (2.0)[°]u/(0)[°]u 1.4 heating to stabilize barrier *** With LFS heating at 70 Ж Ж

1.2

1.0

3.5

MHz, used 80 MHz core heating to stabilize barrier.

J. Rice et al, Nucl. Fusion 42, 510(2002)

Ж

Ж

4.5

 $B_{T}(T)$

Ж

4.0

Ж

Ж

5.0

Ж

Alcator

C-Mod

0.6

Ж

Ж

5.5

*∦

TRANSP analysis confirms energy and particle transport barrier

- Strong decrease in χ_{eff} as well as D when barrier forms.
- Ware pinch is large enough to peak n_e(R) once D is reduced.
- With central heating, core χ_{eff} and D increase somewhat but are still less than without barrier.
 - Can control barrier strength, avoid impurity accumulation as well as MHD limits.
- Localized energy transport barrier is also seen clearly in sawtooth heat propagation.

Emerging understanding of ITB mechanism from GS2 simulations

- Formation starts with decrease in ITG mode (note low η_e , R/L_T).
 - At transition time, ExB shear does not appear dominant.
- Ware pinch peaks n_e, p_e.
 - n_e gradient then further stabilizes ITG (positive feedback), but can drive weak TEM in barrier.
- When on-axis heating is applied, TEM increases (lower v*).
 - Nonlinear simulations show enough transport to balance Ware pinch, arrest peaking.
 - Too much heating erodes the barrier.
- Preliminary Picture; need many tests in models, experiments!

Alcator

C-Mod

D. Ernst, Sherwood 2002

M. Redi, TTF 2002, EPS 2002 C. Fiore, PoP 2001, TTF 2002

Long pulse operation demonstrated for 3 seconds

- 5 T, 800 kA.
- L and H-mode discharges, with ICRF.
- Densities were controlled. ~ $4x10^{19} \text{ m}^{-3}$ (L), $2x10^{20} \text{ m}^{-3}$ (H)
- $T_{e0} \sim 2 \text{ keV}$ $t_{pulse} \sim 15 \tau_{CR}$ (would be ~ 4 τ_{CR} at 5 keV).
- No engineering problems (details by Jim Irby).

Mode conversion heating is efficient, well localized

- Electron HEATING by modeconverted IBW/IC waves has been measured in several experiments, scenarios.
- Efficiency up to 60%.
- Localized radially, can be placed on or off-axis by varying B_T, concentrations.
- Increasing understanding of physics through high modenumber TORIC simulations, PCI measurements.

Alcator

C-**M**od

ACCOME modelling has identified several promising AT scenarios

Alcator C-Mod

- Example of an optimized scenario.
 - I_{LH}=240 kA
 I_{BS}=600 kA (70%)
- MHD stable, β_n =2.9

- Double transport barrier
 - B_T=4 T
 - ICRH: 5 MW
 - LHCD: 3 MW, N_{//0}=3
 - n_e(0)= 1.8e²⁰ m⁻³
 - $T_e(0)=6.5 \text{ keV} (H=2.5)$
- Scenarios without barrier, or only an ITB, have similar performance.

Target Plasma Development and Scenario Modelling closely linked.

- Modelling is used to assess wave accessibility, damping, and CD efficiency, and guide target plasma development toward more optimal scenarios.
- Exploring several different regimes:
 - Rampup,
 - L-mode,
 - H-mode and
 - Double-barrier.

Alcator

C-Mod

Current ramp, low density L-Mode.

- Based on an expt with $T_{e0} = 5 \text{ keV}$, $n_{e0} = 1.5 \times 10^{20} \text{ m}^{-3}$, 1.8 MW ICRH.
- Model predicts I_{LH} = 390 kA, strong shear reversal.
- Also have dynamic simulations with
 TRANSP+ LSC

http://www.psfc.mit.edu/people/jliptac/amanda/2203anim.html

Double Barrier Mode

Density profile from an ITB discharge with off-axis ICRH. T_e has been raised to 3 keV **ACCOME predicts 60% bootstrap current** (470 kA) (I_{BS} ~100 kA in actual discharge). *But, at radius smaller than optimum*.

- Expts aim to expand barrier, increase T_e .

Good LH penetration even with H-mode pedestal. Adding LHCD increases q_{min} , bootstrap fraction at fixed I_p . f_{bs} , q_{min} increase at lower I_p .

 I_p =750 kA, I_{LH} =110 kA f_{BS} =0.68

Research Issues and Plans

Long Term Advanced Tokamak Program

Current Profile Control: LHCD

- High power L-mode.
- Lower density H-modes.
- 2003: Commission Phase I.
 - Assess power handling.
 What is the limit for short, long pulses?
 - Focus on LH coupling, wave physics studies.
 - Measure coupling efficiency, reflectivity vs density, launcher and limiter position.
 - LHCD and heating efficiency and deposition profile studies vs density, N_{//}. Both on and off-axis CD
 - Imaging Hard X-ray Spectrometer for fast electron profile and MSE for j(r) are important diagnostics.

TRANSMISSION COEFFICIENT

Alcator

C-Mod

Current Profile Control: LHCD

2004: Combine LHCD and ICRH.

• Combine LHCD with barriers, optimize total current profiles.

2005: Commission LHCD Phase II.

- 2nd antenna allows 4 MW source,
- **3 MW coupled** for modest power density, **5 sec** pulse .
- Add new 4-strap ICRF antenna.
 - Use flexibility of two launchers to create spectrum with two N_{//} peaks.
 - Modelling and other experiments (eg ASDEX) show that a high N_{//} component increases off-axis absorption and localization.

Current Profile Control: MCCD

- MCCD was demonstrated on TFTR (Majeski et al, 1996)
- Modelling predicts MCCD has best efficiency at high T_e (ie on-axis).
 - Good complement to LHCD, may provide 'seed current' ~ 100 kA.
- 2003: Initial tests of MCIBW with current drive phasing.
- 2004: If successful, combine with LHCD. Synergism??

TORIC - Adjoint Code Prediction for Off-axis MCCD in C-Mod (N_m =161, 5.5 T, 60 MHz) I_p =800 kA I_{RF} = 90 kA P_{ICRF} = 3 MW $n_e(o) = 2 \times 10^{20} \text{ m}^{-3}$ $T_e(o) = 3.5 \text{ keV}$ $n_{He-3} / n_e = 0.15$

Flow Profile Control

- Already observe large toroidal rotation, (up to 120 km/s), without momentum input (ohmic or RF).
- Not well understood; appears related to transport, W_{plasma}.
- Shear flow is known to affect transport, barriers; *an active RF* control tool is of great interest to all experiments.

2002-3

- Improving V_{ϕ} , V_{θ} diagnostics in (X-ray and CXRS).
- Will look for evidence of localized poloidal flow drive by mode converted IC waves.
- If flow drive proves significant, will later test influence on transport, ITBs.

Transport and Pressure Profile Control

2002 (planned expts)

 Improve understanding of ITBs in ohmic plasmas and with offaxis ICRH.

What is the threshold condition? Is there hysteresis? Role of rotation? Detailed profiles, time behaviour of χ , D?

– R/L_T , η variation, B_T scans, heat and impurity pulses.

Barrier location control.

What determines the barrier location (usually r/a~0.5)? Can bootstrap current be expanded for more attractive AT scenario? Does it respond to changes in magnetic shear?

- Current scan, fast current ramps.

• Improving performance.

How can we maximize energy confinement, bootstrap current? Does regime extend to higher T, lower v^* ?

- Higher B (5.4 or 6.2 T), higher power ITBs.

Transport and Pressure Profile Control

2003-7

- Investigate influence of magnetic shear on ITB formation, location and transport profiles.
 - Use LHCD and MCCD to control j(r).
- Study effect of flow drive on barriers.
 - Depends on MCIBW flow drive tests.
 - Can it be an active barrier control tool?
- Adjust heating profile to modify T_e(R)
 - Two ICRF frequencies.
 - LH Heating
- **Optimize density, temperature, bootstrap profiles** for compatibility with LHCD, maximum non-inductive CD scenario.
 - Goal is 50% non-inductive in 2004 (Phase I LHCD)
 - 100% non-inductive by 2007 (Phase II LHCD)

Density Profile Control.

Density is critical for LHCD accessibility, efficiency and deposition profile.

- For fixed efficiency, $I_{LH} \sim 1/n_e$.
- $\eta \sim 1/N_{\prime\prime}^2$, and increases with T_e.
- LH wave accessibility is a strong function of local density, field, N_{//}.
 - This gives several useful 'knobs' to control deposition profile, and get localized offaxis CD

Density Profile Control.

- Cryopump will be installed in 2004.
 - Tests show high neutral pressure with unbalanced DN.
 - Planning upper cryopump.
- **Transport control** will be the best tool for density peaking.
 - Also have Li, D pellet injectors.
- Will assess impurity accumulation, wall saturation effects for longpulses.

Power Handling in Long Pulse AT

- Divertor/SOL power handing will also be a major challenge as power, pulse length increase.
- Requirement for fairly low edge n_e (1-2x10²⁰ m⁻³) for LHCD makes radiative divertor difficult.
- **2003-4**:
 - 6 MW ICRH + 2 MW LH (coupled)
 - ~3 second pulses.
 - Add IR cameras to monitor LH antenna, hot spots
 - Try strike point sweep.
- **2005-7**:
 - 6 MW ICRH+3 MW LH
 - 5 s pulses.
 - Upgrade outer divertor, plus other areas as required.

MHD Stability of non-inductive plasmas

- Expect core MHD stability to be more important as power, β raised.
- Ideal no-wall limit $\beta_n \sim 3$.
 - With *optimized* p(r), j(r).
 - Strong shaping.
- Installed antennas for active core MHD spectroscopy to measure linear growth rates.
 - Feedback to avoid limit.
- Study ELM, core MHD interaction.
- Try stabilization of NTM using LHCD and/or MCCD.
- Plan to carry out a design/feasibility study of active stabilization methods to allow β > no-wall limit, in collaboration with Columbia.
- May install such a system ~ 2007.

Alcator

C-Mod

AT-Related Modelling

RF near term, longer term

- Sensitivity studies of LHCD current profile using ACCOME (vary n_e, B, T_e, N_{//}) (Collaboration with R. Dumont, PPPL)
- 2-D (V_{perp}, V_{//}) Fokker Planck simulations of LHCD (R.W. Harvey – CompX, P. Bonoli) - preliminary results show increased CD
- LHCD efficiency, distribution simulations, X-ray diagnostic design (Y. Peysson, Cadarache, A. Bers, J. Decker, MIT).
- Full Wave simulations of LHCD (1-D) and IBW (3-D) (*R. Dumont, and C.K. Phillips, PPPL, P. Bonoli, J. Wright, MIT*).
- Full Wave LH simulations in 2-D (*R. Dumont and C.K. Phillips, PPPL, P. Bonoli, J. Wright, MIT; part of SciDac effort*)

AT-related Modelling

TRANSPORT

- Couple current drive and transport modelling using TRANSP in predictive mode (J. Liptac, P. Bonoli).
 - Use χs obtained from analysis of C-Mod ITBs, simplified criteria for barrier formation.
- Gyrokinetic analysis (GS2) of ITB discharges. (M. Redi, PPPL, D. Ernst)
- Couple LHCD model from ACCOME to TRANSP. (MIT, PPPL)
- Use evolving capabilities of TRANSP for more theory-based predictive modelling. Eg. assessing ω_{ExB} vs $\gamma_{\text{ITG.}}$
- Develop and incorporate improved **particle transport modelling** (critical for ITB simulations).

MHD

• Low n and ballooning stability analysis of modeled scenarios with PEST-2, Keldysh code and MARS (*J. Ramos, MIT PSFC*)

Integrated AT Scenario Demonstration

- A successful AT demonstration must *combine* all of the control tools and physics/technology areas discussed.
 - Eg. LHCD and high bootstrap and high β and long-pulse divertor.
 - Integration and parameter optimization will be an important part of the program from the beginning. For example, tradeoffs necessary in I_p, density.
 - With so many tools, regimes to explore and exploit, increased run-weeks will be essential.
 - Scenario modelling is critical to make efficient use of run time, and is closely coupled to expt!
- Goal is fully non-inductive current drive, from LHCD plus bootstrap current, at β_N =3.0 (or higher), for 5 second pulse length (~6 τ_{CR} at 5 keV).

Decreasing Confinement

Also tradeoffs in density:

low n for maximum LHCD, high grad-n favours bootstrap.

Summary

- Advanced Tokamak thrust will be an increasingly important part of the C-Mod program.
- Focusses on RF control of current, transport and pressure profiles in high density regime, for t >> τ_{CR}, to make unique contributions to world AT program.
- We have succeeded in modifying core transport without momentum input or reversed shear.
- LHCD is well underway Phase I on schedule for March 2003.
- Long term program leads progressively to a non-inductive, steady state, advanced tokamak demonstration in a unique regime highly relevant to any BPX.

- all RF drive, $B_T = 4-6 T$, $T_i \sim T_e$, $n_e \sim 1-5 \times 10^{20} m^{-3}$.