

Status and Plans for the PEGASUS Toroidal Experiment

R. J. Fonck for the Pegasus Team

presented to the

NSTX Five Year Plan Ideas Forum

Princeton Plasma Physics Laboratory June 24-26, 2002

An extremely low-aspect ratio facility exploring quasi-spherical high-pressure plasmas with the goal of minimizing the central column while maintaining good confinement and stability.

- Physics of A ≈ 1 plasmas as an <u>Alternate Concept</u> (low q)
 - Extreme toroidicity $(A \rightarrow 1)$
 - Very high TF utilization $(I_P/I_{TF}) > 3$
 - Stability at very low TF ($\beta \approx 1$)
 - Relaxation stability at tokamak/spheromak boundary
 - RF heating and CD schemes (HHFW, EBW)
 - Trade-offs:
 CD, recirculating power, and A ≈ 1, low-TF operation

• Contribute to development of the ST (high q)

- Stability limits for $A \rightarrow 1$ (vs. $I_p/I_{TF}, q_{\psi}, N_e, \beta_t, \beta_{pol}, \kappa, A, etc.$)
- β limit dependencies
- Access high β_t at extreme I_N w/o conducting shell
- Confinement A < 1.3
- New startup schemes (e.g., plasma gun, EBW)

Pegasus is a mid-sized university spherical torus

- Achieved Parameters:
 - $\begin{array}{ll} \ R = 0.2 0.45 \ m & \ A = 1.15 1.3 \\ \ B_t \leq 0.07 \ T & \ I_p \leq 0.15 \ MA \\ \ \kappa = 1.5 3.7 & \ \Delta t_{pulse} = 10 30 \ ms \\ \ < n_e > = 1 5 x 10^{19} \ m^{-3} & \ \beta_t \leq 20\% \end{array}$
- High-strength solenoid magnet is enabling technology

Pegasus Personnel - Experiment Team:

Staff: G. Garstka B. Lewicki **B**.Ford G. Winz

R. Fonck P. Nonn (+ MST) P. Probert (+ HSX) Graduate Students:

C. Ostrander

N. Eiditis

- A. Sontag
- K. Tritz
- E. Unterberg

<u>Undergraduates:</u>

- S. Diem M. Reinke R. Slowoski R. Curtiss
- B. Wilson J. Boerner A. Norseck

C. Putre R. Radel T. Wagner

- Associated Theory (CPTC) C. Sovinec
 - J. Callen

C. Hegna

Extensive magnetic diagnostics

Segmented divertor plates

Pegasus Toroidal Experiment University of Wisconsin-Madison

 Presently Operating Diagnostics 					
	Diagnostic	<u>Capability</u>	<u>Measures</u>		
	Core Flux Loops	(6)	V_L , Ψ_pol		
	Wall Flux loops	(6)	Vessel currents		
	Int. Flux loops	(20)	Ψ_{pol}		
	Rogowski Coils	(2)	l _p		
	Diamagnetic Loop	(2)	$\Phi_{ m tor}$ / $\beta_{ m p}$		
	B _p , Mirnov Coils	(56)	B _r , B _z /MHD activity		
	VUV (SPRED)	central chord	Impurity monitor		
	Filterscopes	central chord	Oxygen, Carbon, VB		
	Interferometer	single chord	N _e l		
	High Res. Camera	1000 fps	Plasma shape/position		
	2-D SXR Camera		Internal Shape/ j(R)		
	Poloidal SXR Diode A	rray (19)	MHD Activity		

Near-Future Diagnostics -

s, D $_{\alpha}$ on

• Neal-Future Diagnostics				
Diagnostic	<u>Capability</u>	<u>Measures</u>	<u>Status</u>	
Tangential CCD PHA	single chord	T _e (t)	In Development	
Tangential Bolometer Array	~20 chords	P _{rad}	Testing	
Ross Filters	4 chords	T _{e0} (t)	Testing	
2-Color X-ray	4 chords	т _е	Testing	
Tangential VB Array	~20 chords	Z _{eff} (R,t), N _e (R,t)	Testing	
DNB		$N_e(R,t), T_e(R,t), j(R)$	Proposed	
EBW Radiometer		T _e (t)	Proposed	

Flux Loops (26)

Poloidal Mirnov Coils (22 + 21)

LFS Toroidal Mirnov Coils (6)

HFS Toroidal Mirnov Coils (7)

Not shown: Plasma Rogowski Coils (2) Diamagnetic Loops (2) Diamagnetic Compensation Loop External Flux Loops (6) Internal B_{tan} Coils (15)

Pegasus Toroidal Experiment

- A new equilibrium code has been developed for Pegasus
 - Robust, cross-platform, easy incorporation of new diagnostics
- Uses a two-step iterative method to determine equilibrium
 - Gauss-Seidel multigrid relaxation to solve Grad-Shafranov equation
 - Levenberg-Marquardt method to minimize χ^2
- Benchmarked against existing codes
- Sample reconstruction:

A dominant feature has been a rotating m/n=2/1 mode

- Mode present in all significant discharges
- Rotates in electron diamagnetic direction - Mode is likely magnetic island
- Frequency is typically 2-10 kHz - No evidence of mode locking
- Little shear stabilization of island growth - Central shear is nearly zero

Pegasus Toroidal Experiment University of Wisconsin-Madison

External kink modes observed in highest-current shots

- Higher-current discharges (150 kA class) often terminate in abrupt disruptions
 - Lower-current shots have IREs followed by gradual plasma termination
- n=1 fluctuations are observed on Mirnov coils immediately prior to disruption
 - Dominant frequency is roughly 10 kHz
 - Mode observed a few $100\,\mu\,s$ before IRE
- Observed disruptions are associated with edge kink limits
 - Oscillations not observed until $q_{95} \approx 5$
- Calculated free-boundary energy (DCON) approaches zero as oscillations begin
 - Negative value indicates instability to external kink
- Consistent with theoretical understanding of ideal kink stability at near-unity A
 - As $A \rightarrow 1$, unstable q_a increases
 - Roles of finite $\beta,$ low \boldsymbol{I}_i under study

(a)

- Equilibrium code
- Wall currents code
- Energy confinement code
- DCON: ideal stability analysis
- TSC: predictive discharge modelling
- GATO: instability growth rates
- NIMROD: resistive MHD analysis

Preliminary Model of Resistive Stability (NIMROD)

Pegasus Toroidal Experiment University of Wisconsin-Madison

- Goals require increased control of plasma conditions
 - *Density control and shot reproducibility* = <u>*between-shot gettering</u></u></u>*
 - Improved equilibrium field control

• Suppression of large internal MHD modes

- Increasing I_p ramp time = <u>increased programmable V-sec from ohmic solenoid</u>
- Attain higher $T_e(0)$ during formation = <u>increased B_T</u>, <u>improved position control</u>
- HHFW heating = increased RF power operation, improved position control
- Maintain q(0) > 2 during plasma formation = <u>increased B</u>_T

Control onset of suspected external kink modes

- Maintain I_p ramp time = <u>increased programmable V-sec from ohmic solenoid</u>
- Maintain high q_{95} during formation = <u>increased B_T w/rampdown</u>
- Controlled gas puff for edge cooling = <u>continuous gettering</u>
- Separatrix operation = <u>energize divertor coils</u>

• Access to very high β_T regime

- Increase $T_e(0)$ during formation = <u>increased B_T w/fast-rampdown</u>
- Increase I_p and $N_e = \underline{increased \ V-sec}$
- *High-power HHFW heating* = <u>increased RF power operation</u>

400

350

300

250

200

150

100

50

0

0

10

20

30

40

time (ms)

50

60

70

I_{TF} (kA)

New power supplies will provide dramatically improved control over plasma evolution

- Bipolar switching supplies replacing resonant L-C systems to provide flexible waveform control
 - TF: much higher I_{rod} and fast rampdown capability w/ new center rod

TF Waveform with Fast Rampdown

- OH: near full use of available flux and programmable V_{loop} control
- EF: programmable position control

• Renewal proposal submitted to continue for another 3 years - Year 1: Tool development and MHD suppression

- - Programmable EF control; Increased V-sec; B_{TF}(t)
 - Lab reconfiguration
- Year 2: I_p limits; access high β_t , low B_{TF} regime
 - Internal MHD suppression thru q(0,t) and resistivity manipulation
 - Vary external mode onset thru edge cooling and shear control, plus geometry and l_i evolution
- Year 3: Stability boundaries documentation
 - Increase stored energy through increased Δt_{pulse} , I_p , T_e , N_e , and P_{aux}
 - Documentation and parameter scans in tokamak-spheromak transition region

Have started ~11 month down period for renovation and upgrades

- Lab reconfiguration or possible move to new high-bay area
- Front-loading proposed major upgrades to present down period
 - Uograded OH power system \Rightarrow 2-3 times effective V-sec
 - New EF power system \Rightarrow active radial position and shape control
 - Low-inductance TF system \Rightarrow time-variable TF

• Present program is mainly complementary

- Explore extreme in A; tokamak-spheromak transition region
- Expand ST database for stability limits, etc.
- Appropriate role for CE component of ST PoP program

Interested in developing future interactions with NSTX program...

- EBW tests
 - 500 kW, 2.45 GHz system feasible
 - Hoping to explore PPPL-ORNL-UW collaboration
- Diagnostic developments
 - Tangential X-ray imaging
 - Low-field j(r) measurements
- Move to tests of startup and non-inductive ST techniques
 - e.g., ECH, EBW, HHFW, external coil induction-compression, etc.
- Fueling with spheromak injection into diamagnetic plasma (UC-Davis)
- Here to explore any and all ideas...

- Facility and analysis developments \Rightarrow increased capability
- Plasma equilibria show low-A characteristics
 - $\beta_t \sim 25\%$ $\beta_N \sim 5$ $n_e \sim n_{GW}$ - $I_p/I_{TF} \sim 1.2$ $I_N \sim 8$ $A \approx 1.16$
 - 2/1, 3/2, double tearing modes, IREs, external kink

• Access to low-B_t, low-A operation: configuration and physics

- V-sec capability can limit access to interesting physics
- Large internal modes (2/1, 3/2) degrade plasma evolution
 Susceptible due to large, low shear region and low T_e?
- Evidence of access to external kinks at low l_i

• Proposed direction: access & document low-q, high $\beta_t @ A \rightarrow 1$

- Characterize tokamak-spheromak overlap regime
- Improved plasma control to manipulate MHD onset
 - Increased I_p; position/shape control; B_{TF}(t)
- Separatrix operation for edge q control and possible H-mode

