Stability considerations for optimizing ST geometry

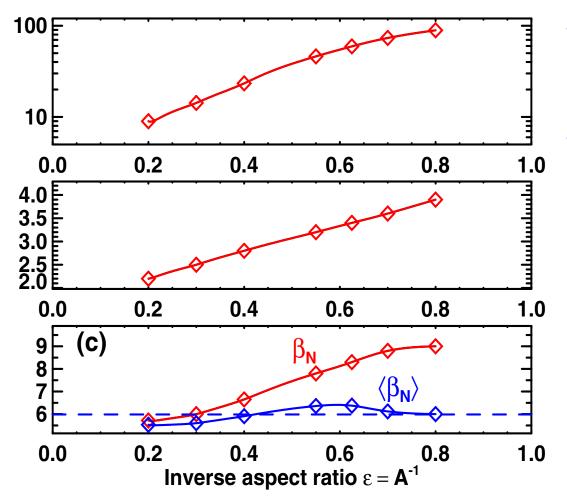
J.E. Menard, PPPL

NSTX 5 Year Plan Ideas Forum

June 24–26, 2002 Princeton Plasma Physics Laboratory

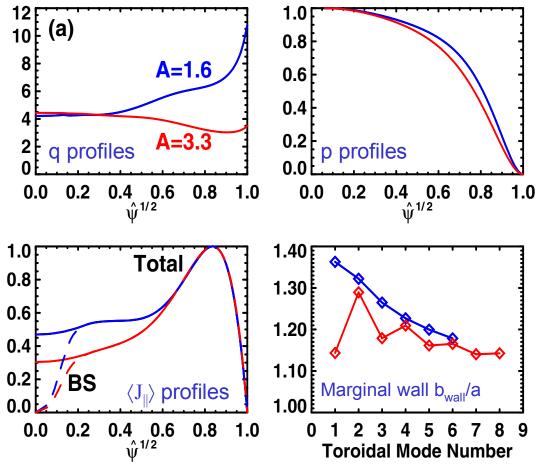
NSTX 5 Year Plan Ideas Forum J.E. Menard – June 24, 2002

P_{fusion} scalings for fixed R_0


- Combining Troyon and BS scalings $\Rightarrow \beta_t(\%) = \epsilon^{1/2} C_{BS} (1+\kappa^2) (\beta_N)^2 / 8 f_{BS}$
- $B_{t0} = B_{MAX}(1 \varepsilon \Delta_{SHIELD}/R_0)$ $\Delta_{SHIELD} = inboard shield thickness$
- $V_{\text{plasma}} \propto R_0^3 \epsilon^2 \kappa$
- $P_{fusion} \propto \beta_t^2 B_{t0}^4 V_{plasma}$

How do κ and β_N limits vary with aspect ratio?

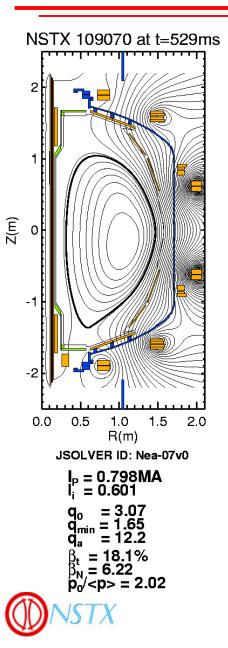
β limits with wall stabilization, f_{BS}=99%

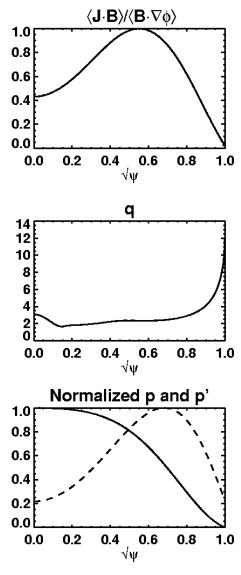

- Factor of 10 increase in β_t from A=5 to A=1.25
 - Result of increased κ , β_N , ϵ
- κ increases from 2 to 4 over same range of aspect ratio
 - With-wall n=1 stability limits maximum elongation, assuming n=0 is stabilized
 - $\kappa \rightarrow 4 \Rightarrow \text{very low li} = 0.1 0.2$
 - β_N approaching 9 possible near A=1.3-1.5
- **Higher** $β_N$ and κ at low A combine to yield highest P_f at fixed R_0 for A=1.6

NSTX 5 Year Plan Ideas Forum J.E. Menard – June 24, 2002

Profile details for wall-stabilized optimized cases

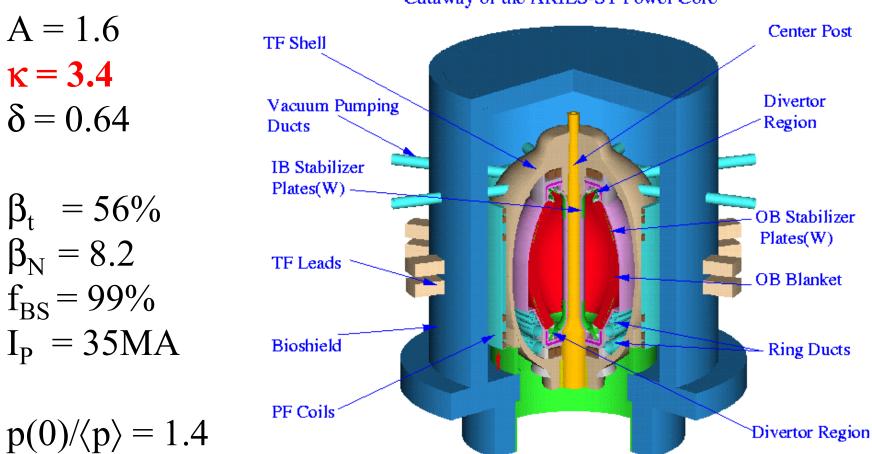
- Safety factor
 - Flat but monotonic q profile for A < 2
 - Reversed shear for A > 2
- Pressure profiles


- Very broad, $p(0)/\langle p \rangle = 1.4-1.6$


- J profile
 - Hollow with large off-axis J_{BS}
 - Zero at edge to avoid peeling
- Wall position
 - Stable to n=1-8 w/ wall at 1.1
 - Intermediate-n most unstable

NSTX beginning to access "advanced" profiles

• EFIT02 without MSE, kinetic p, etc., but these shots appear to have:

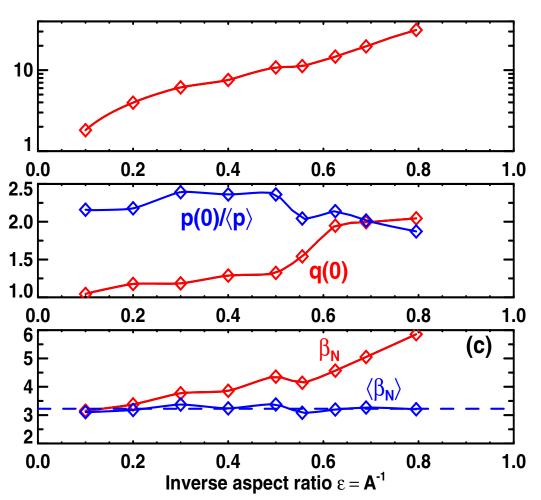

$$\beta_{\rm N} = 6.2, l_i = 0.6, q \ge 2$$

- $\beta_{\rm N} / l_i > 10$

- $\geq \frac{1}{2}$ way between theoretical no-wall and with-wall limit?
- Hollow J profile
 - Flat q profile?
 - or reversed shear?
- Broad pressure profiles - $p_e(0)/\langle p_e \rangle = 1.8$ (H-mode)

NSTX 5 Year Plan Ideas Forum J.E. Menard – June 24, 2002

ST reactor relies on wall stabilization and extreme κ


Cutaway of the ARIES-ST Power Core

NSTX 5 Year Plan Ideas Forum J.E. Menard – June 24, 2002

ARIES Information Team

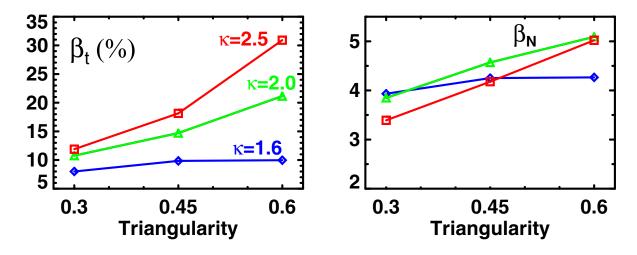
β limits *without* wall stabilization, f_{BS}=50%

- Fixed κ=2.0, δ=0.45
- Factor of 8 increase in β_t from A=5 to A=1.25

– Result of increased β_N and ϵ

• q(0) for optimal ideal stability at or above 2 for A < 1.8

Improved NTM stability


- $\beta_{\rm N}$ approaching 6 possible at lowest A treated (A=1.25)
- Higher β_N at low A with fixed κ yields highest P_f at fixed R₀ when A=1.8
 - Including ε dependence of κ would lower optimal A

NSTX 5 Year Plan Ideas Forum J.E. Menard – June 24, 2002

β limits without wall, A=1.6, f_{BS}=50%

- High δ crucial to no-wall stability of high κ and f_{BS} regime
 - 30% increase in β_t as $\delta=0.3 \rightarrow 0.6$ for $\kappa = 1.6$

- Factor of 2 increase for $\kappa=2, \times 2.5$ for $\kappa=2.5$

- With κ =2.5 and δ =0.6, can theoretically achieve NSTXlike β_t ~30% at higher A=1.6 w/o wall and with higher f_{BS}
 - Utilizing wall stabilization, $\kappa=2.5$, and $\delta=0.6$, $\beta_t\sim40\%$ and $f_{BS}=70\%$ are theoretically achievable similar to lower A=1.25 target

NSTX 5 Year Plan Ideas Forum J.E. Menard – June 24, 2002



Summary

- Stability \Rightarrow optimal A for max. P_{fusion} is A=1.6-1.8
 - Requires minimal inboard shielding, "free" non-inductive CD
 - Similar scaling results with and without wall stabilization
 - β_N limit increases naturally with increasing ϵ
 - n=0,1 elongation limits also increase at lower A
 - − Optimal $q(0) \ge 2$ for $A \le 1.8 \Rightarrow$ improved NTM stability
- Large increase in β_t with increased κ
 - Above $\kappa=2$, increased δ required for highest κ
 - Very broad p profiles in optimized regimes
- Optimized A=1.6 targets:
 - A=1.6, κ =2.5, δ =0.6, β_t =30%, f_{BS} =50%
 - β_t =40%, f_{BS}=70% possible with wall, like present target
- Can NSTX study higher A, κ , δ in next 5 years?

NSTX 5 Year Plan Ideas Forum J.E. Menard – June 24, 2002

