Establishing the Science for Meeting 5 and 10 Year <u>MHD Goals</u>

S. A. Sabbagh

Columbia University

NSTX 5 Year Plan Ideas Forum – 6/24/2002 MHD Stability Group

Princeton Plasma Physics Laboratory

MHD Group

FESAC IPPA goals – define efficient methods to meet them

Purpose of talk

Catalyst for discussion of group ideas in NSTX MHD science

Guidance for Ideas Discussion

□ FESAC 5 and 10 year ST goals from IPPA report

Make preliminary determination of the attractiveness of the ST by assessing high-beta stability, confinement, self-consistent high-bootstrap operation, and acceptable divertor heat flux, for pulse lengths much greater than energy confinement times (5 yr)

Assess the attractiveness of extrapolable, long-pulse operation of the ST for time scales much greater than current penetration time scales (10 yr)

Start with broad, long term science goals

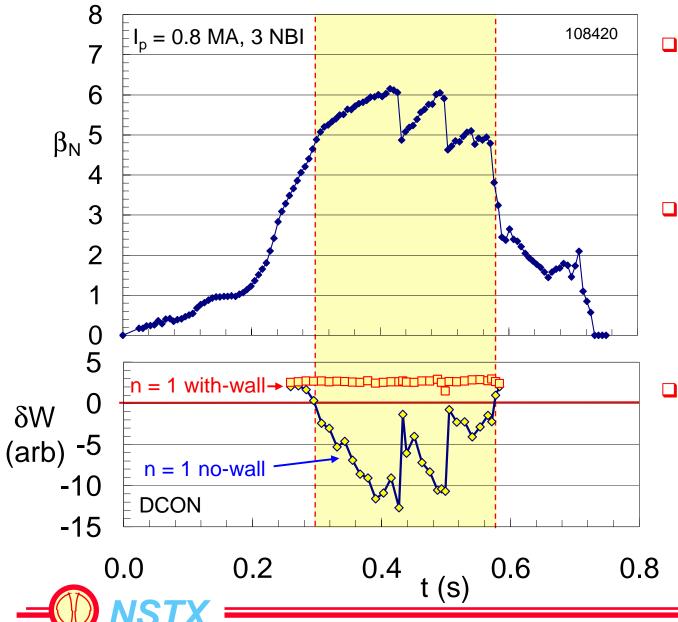
Articulate how these define, or blend in with major facility upgrades

Continue by defining practical short term methods to reach goals

Discuss and produce solutions that exceed expectations

Challenge: Continue to deliver key science ahead of schedule!

MHD Group

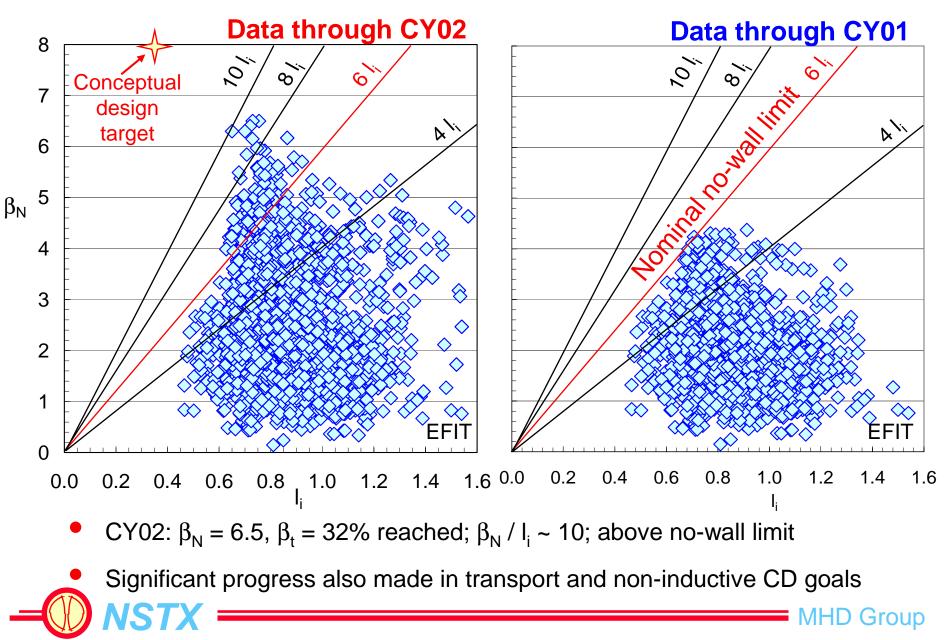

Demonstrate NSTX fast progress toward MHD science goals

- 5 Year FESAC IPPA Goals
 - Develop detailed predictive capability for macroscopic stability, including resistive and kinetic effects
 - Progress measured by the level of agreement between predicted and observed stability regimes and by improvements in the stability of operating confinement devices
- 10 Year FESAC IPPA Goals
 - Develop fully integrated capability for predicting the performance of externallycontrolled systems including...macroscopic stability...
 - Develop qualitative predictive capability for transport and stability in self-organized systems
 - Advance the forefront of non-fusion plasma science and technology...
- Implementation Approaches
 - Stability analysis of intermediate-*n* number mode
 - RWM theory development and experimental investigation
 - Improve usefulness of resistive stability predictions by extended theory / simulation
 - □ Physics of external control: boundary / profile shaping; instability feedback stabilization

VIHD Group

- Extend MHD: FLR physics, suprathermal particle effects, rotation effects
- □ NSTX progress toward 5 year goal (one example)
 - between-shots diagnostics available for quantitative, between-shots ideal stability analysis; Plans to include rotation, resistive effects; plan for kinetic effects

Between-shots stability extensively tested in CY02



- Diagnosis of wallstabilized plasmas
 - A few thousand shot*times run
- Examined violation of ideal limits with onset of resistive wall modes and beta collapses
- Ideal no-wall limit violated for many τ_E and τ_{wall} in many plasmas

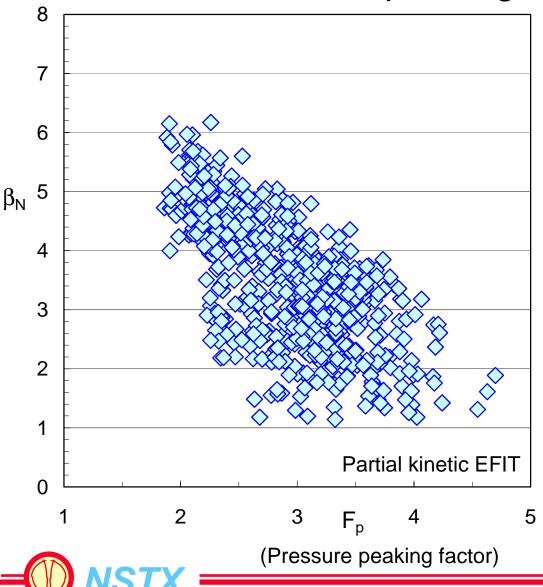
MHD

Group

Significant progress in CY02 toward high beta goals

<u>Can ST participate in science of high performance plasmas</u> <u>in an accelerated (5 year) timescale?</u>

- FESAC Goal 3: Advance understanding in high performance plasmas, optimizing for power plant req's, burning plasma
 - Assess profile control methods for current sustainment (AT only?)
 - Develop / assess high-beta instability feedback control (AT only?)
 - Develop / assess burning plasma scenarios
- What approach to take?
 - Expand physics studies with minor facility upgrades?
 - Emphasize certain MHD science to satisfy goals?
 - Accelerate design and implementation of center stack upgrade?
- □ How does your research contribute to group ideas?


Key instabilities presently being researched

Instability	Beta limiting?
Ideal low-n kink/ballooning	yes
Resistive wall modes	yes
Neoclassical tearing modes	yes
Current-driven kinks	at reduced q
Locked modes	can be
Sawteeth	can trigger NTM
Alfven eigenmodes (CAE, TAE)	no

MHD Group

Strong correlation between max β_N and pressure peaking

- NSTX plasmas in CY02 have favorable profiles for stability in H-mode
- Increased β_N reached at reduced pressure peaking (H-mode)
- Further β_N increase through increased $\delta \sim 0.8$
- Long pulse, high β_N , β_p plasmas created
 - Partial kinetics reconstructions support q₀ > 1 hypothesis

MHD

Group