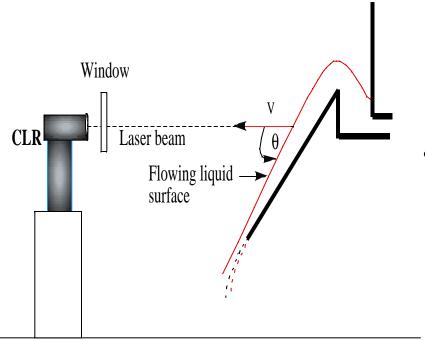
<u>A New Diagnostic for Flow Characterization of</u> <u>Liquid Metal (LM) Modules</u>

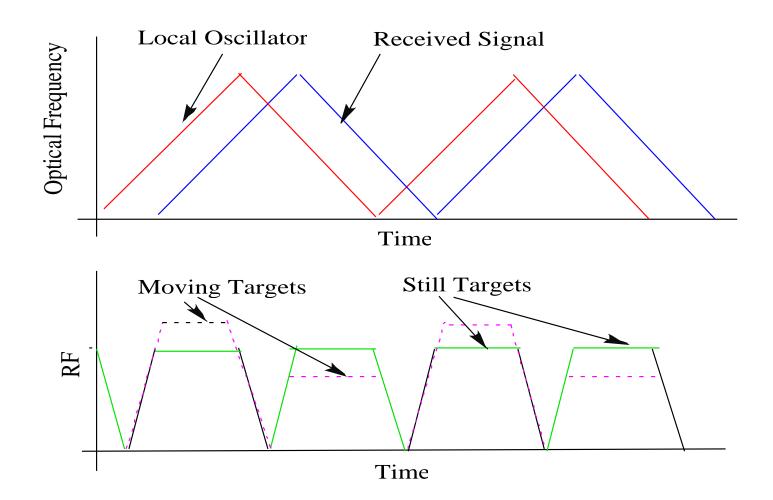

M. M. Menon, Oak Ridge National Laboratory

Presented at the NSTX 5 Year Plan Ideas Forum June 24 - 26, 2002, PPPL

<u>A diagnostic is needed for characterizing LM flows</u> <u>in fusion environment</u>

- Measurement of:
 - Flow velocity (up to 10 m/s).
 - Film thickness.
 - Flow instabilities during plasma discharges.
- Technique be compatible with fusion environment.
 - strong pulsed magnetic fields.
 - high temperature.
 - High vacuum.
 - Low vapor pressure materials.
- Conventional techniques are not adequate for conducting dynamic measurements under fusion plasma conditions.

Concept for free-surface flow characterization



- Truly remote measurements using Doppler effect:
 - Flow velocity distribution
 - Film thickness distribution
 - Flow instabilities

$$\mathbf{v} = \Delta f \cdot \lambda_0$$

Where, **v** is the velocity component of the flow in the beam direction, and λ_0 is the laser wavelength, and Δf is the Doppler shift in frequency.

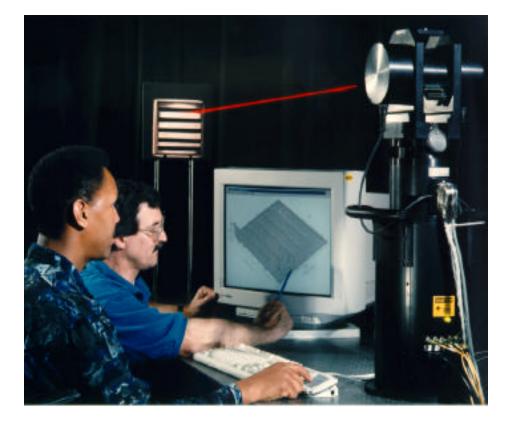
Principles

Symmetric up-shift/down-shift modulation permits Doppler corrected range and velocity measurements.

• For a stationary target:

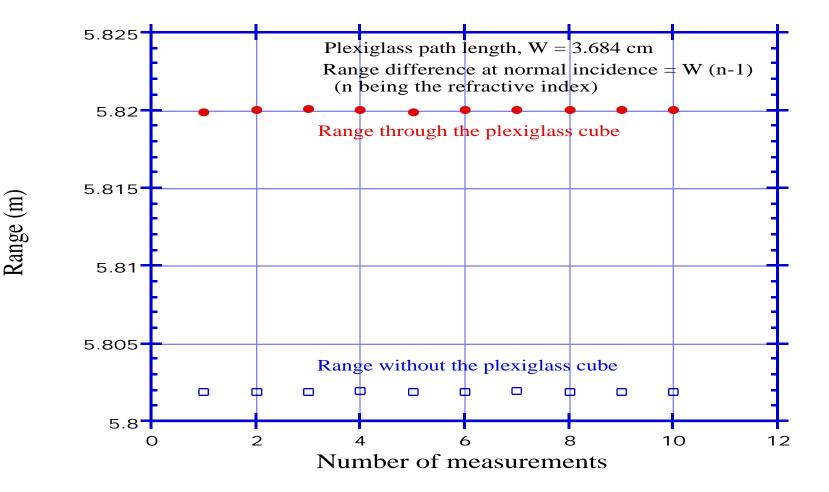
 $\boldsymbol{R} = [\boldsymbol{c}/2\boldsymbol{M}_f] \ \boldsymbol{f}_b$

where R is the range, \mathbf{c} is the velocity of light, \mathbf{f}_b is the beat frequency, and M_f is the constant rate of frequency modulation.

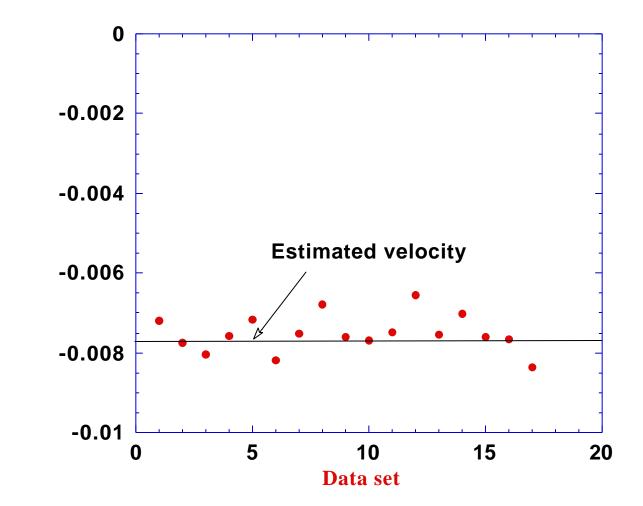

• When the target is moving, Doppler component \mathbf{v}/λ_0 is added to the beat frequency.

$$\mathbf{f}_{bu} = \mathbf{M}_{f} \left(2\mathbf{R}/\mathbf{c} \right) + \mathbf{v}/\lambda_{0}$$

$$\mathbf{f}_{bd}$$
 = - $M_f (2\mathbf{R/c}) + \mathbf{v/\lambda}_0$

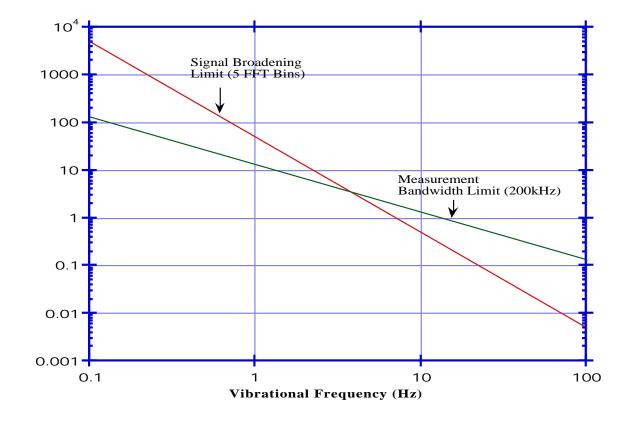

$$\mathbf{v} = \lambda_0 (\mathbf{f}_{bu} + \mathbf{f}_{bd})/2$$
$$\mathbf{R} = (\mathbf{f}_{bu} - \mathbf{f}_{bd}) [\mathbf{c}/2\mathbf{M}_f]$$

The current FM CLR is optimized for metrology, and not velocity measurements



- Uses electromechanical scanning head.
- Bandwidth limits of DSP electronics.
- Speed limitation (250/s).
- Not compatible with fusion environment.

<u>Measurements can be done through a window</u> (fully non-intrusive and avoids vibration effects)



<u>Proof-of-principle measurements with the laser</u> <u>aimed at a freely flowing chart recorder paper</u>

Measured velocity (m/s)

Digital signal processing limitations

- With the current version of FM CLR, maximum velocity that can be measured is only about 50 mm/s.
- Significantly higher velocities (~10 m/s) are anticipated in fusion applications.

<u>A new Doppler Laser Radar (DOLAR) is being</u> <u>developed to overcome the limitations</u>

- Remote, precision measurements of both range (up to 5 m) and velocity (up to 10 m/s).
- Optical head, designed to operate in fusion environment, umbilically linked to the rest of the system.
- Acousto-optic scanning technique for fast scanning of the beam in one direction.
- Laser amplifier to boost the poor signal levels anticipated from reflective LM surfaces.
- Two different modes of operation, one for velocity measurement and the other for range measurement. Ability to switch between the two modes in a rapid manner.
- In each mode, ability to resolve small changes: 50 μ m in range, and 100 μ m/s in velocity.

<u>Summary</u>

- A Doppler Laser Radar (DOLAR) is being developed to measure the film thickness, flow velocity, and certain instabilities of freely flowing liquid metal surfaces.
- DOLAR will be designed to conduct measurements during plasma discharge conditions.
- The measurements will be done in a truly non-intrusive manner.
- The optical head will be the only component located close to the fusion chamber.
- The DOLAR will also be designed for remote in-vessel metrology of plasma facing components in burning plasma experiments (the optical head will operate under vacuum, high temperature, and radiation environment).