Plans for the Motional Stark Effect Diagnostic on NSTX

F. M. LEVINTON

NOVA PHOTONICS, INC.

Presented at the NSTX Five Year Planning Workshop

June 24-26, 2002

Princeton, NJ

Motional Stark Effect (MSE)

Polarimetry Diagnostic: MSE-CIF

Nova Photonics, Inc.

• MSE via collisionally induced fluorescence (MSE-CIF).

– Tangential view of the heating beam.

- Characteristics:
 - Time resolution: ~ 5 msec.
 - Spatial resolution: 2-3 cm.
 - Pitch angle uncertainty: ~ 0.2 degrees.
- Schedule:
 - Installation on NSTX this summer.
 - Begin shakedown of 2-4 channels when heating beams begin injection into plasma.
 - -10 channels in early 2003.
 - Goal Calibrated data before end of next run.
 - Increase number of channels to 19 in early FY04.
- Future option: high resolution edge MSE.

Nova Photonics, Inc.

- MSE-CIF: Measure magnetic field pitch angle \Rightarrow q(r) and j(r).
 - Reversed shear scenario.
 - MHD stability.
 - Non-inductive current drive using RF(HHFW, EBW).
 - Bootstrap current and effects on stability and transport.
 - Real-time equilibrium.

Motional Stark Effect (MSE)

Polarimetry Diagnostic: MSE-LIF

Nova Photonics, Inc.

- MSE via laser-induced fluorescence (MSE-LIF).
 - New approach under development; using a diagnostic neutral beam and laser-induced fluorescence (LIF).
- Design goals:
 - Time resolution: ~ 5 msec.
 - Spatial resolution: 2-3 cm.
 - Pitch angle uncertainty: ~ 0.2 degrees.
 - $-E_r$ (combined with MSE-CIF) uncertainty: ~1 kV/m.
 - -|B| uncertainty: < 0.1%.
- Installation on NSTX is expected to be FY04-05.

Nova Photonics, Inc.

- New approach under development; using a diagnostic neutral beam and laser-induced fluorescence (LIF).
 - Radial electric field $\Rightarrow E \times B$ shear, micro-stability, transport.
 - Current profiles without heating beams \Rightarrow plasma startup (both inductive and non-inductive), CHI, RF.
 - -P(r) independent of numerical calculation of nonthermal contribution from beams or RF \Rightarrow MHD stability, advanced feedback and control, fast particle physics.