M3D Status and Plans

W. Park et al., Phys. Plasmas **6**, 1796 (1999) http://w3.pppl.gov/~wpark/pop_99.pdf

Multilevel 3D Project for Plasma Simulation studies.

MPP code using MPI.

M3D Project

Physics	Geometry & Hardware	State
MHD 2 Fluids Gyrokin. Hot P./MHD Gyrokin.Ion/Fluid Elect.	Tokamaks, ST's, Stellarators,	Equilibrium Linear
	ct. Resistive Shell External coils	Nomineai

Density profile dependence on Physics model

Relative shift of \boldsymbol{r} $\frac{R\partial \boldsymbol{r}}{\boldsymbol{r}\partial R} = \frac{2M_A^2}{\boldsymbol{b}}$

Hot particle centrifugal force ~ Bulk plasma

Linear Eigenmodes: shear flow reduces growth rate

Linear Eigenmodes Top view on the mid-plane

MA=0 Ωm=0 With shear flow: MA=0.2 Rotating mode: Ω m=0.13

Nonlinear Evolution without strong flow: similar to a sawtooth crash

IRE : Disruption

Stochasticity as shown before.
Localized steepening of pressure driven modes as shown here.

Nonlinear Evolution with peak rotation of MA=0.2

ρ (P) and T out of phase

 $\mathbf{f} = 0$

f = 0.5**p**

f=1.5**p**

f = **p**

Saturated steady state with strong sheared flow

B Field line in the island Density (Pressure) contours Temperature isosurface

Pressure peak inside the island together with shear flow causes the mode saturation.

EPM (BAE) is excited at high beta in Hybrid simulations

More coupling to sound wave due to stronger curvature and high beta. May explain experimental data.

BAE changes to TAE when Γ is set to zero

Current Hole phenomena

- Off-axis current drive applied
- Central current density was clamped by axisymmetric sawteeth

Stellarator nonlinear ballooning mode

At $\beta=8\%$, disruption can occur due to localized steepenings of pressure driven modes.

Two-fluid effects seem to stabilize the resistive modes. May explain the absence of resistive modes in experiments.

$$h = c / ({}_{pi}R) \qquad \beta = 4\%$$

$$*_{A} = hn({}_{p}a/2qL_{p})$$

TAE Modes in Stellarators in Hybrid simulations

A 2-period QAS stellarator case is compared to the case when the 3D shape is suppressed.

Summary

- Continue simulation studies of NSTX using MHD, Two-fluid (ω*, Hall, NC), and Particle/Fluid hybrid models.
- Better parallel efficiency, more efficient numerical methods, such as dynamic meshes,...
 Ion collisions. Better electron fluid closures; NC, Landau.
- Resistive wall and coils: CHI, RWM, Feedback.
- For EFIT initial condition, would like to have more accurate profiles especially the q profile.

For comparison of modes, would like to have high digitation rate local measurements, such as EBW.