

NSTX HHFW System Improvements

Phil Ryan, ORNL

NSTX Five Year Plan Workshop Princeton Plasma Physics Laboratory June 24-26, 2002

HHFW Physics Goals and Issues

- High density, high beta heating
- Off-axis heating/current drive
 - Need MSE to assist in optimizing non-inductive CD
- Long pulse, stable scenarios
 - Avoid MHD instabilities, central temperature collapse
 - Current drive in H-mode
 - J(r) tailoring
- HHFW/NBI coexistence
- Integration with CHI startup
- Wave generation other than HHFW
 - Surface modes, coaxial modes, IBW
 - RF probes around machine
- Edge plasma fluctuations
 - density fluctuations measurements with reflectometer, Langmuir probes

HHFW Operation on NSTX Has Made Progress

- Up to 6 MW delivered to plasma; routine operation in the 3-4 MW range.
- Strong electron heating observed over a wide range of wave phase velocity (k_{||} ~ 3, 7, 14 m⁻¹).
- H-mode (both ELMy and ELM-free) achieved with HHFW alone.
- Evidence of internal transport barrier in low density plasmas.
- Non-inductive current drive detected for both $\pm \pi/2$ and $\pm \pi/4$ array phasing.
- Power absorption on high energy neutral beam ions observed.

HHFW Technology/Operation Issues

• High power reliability

- Voltage limits in vacuum ~double what is achievable in plasma.
- Improve voltage limits during plasma operation.
- Modify control system so that non-arcing transmitters stay on.

• RF noise generation

- RF noise pickup on instrumentation increases as array phase shift is decreased.
- Both improve instrument shielding and identify the cause of noise generation/propagation.
- New diagnostics for measuring edge fluctuations, rf wave amplitudes.
- Phase-dependent loading
 - Loading for counter-CD phasing is lower than for co-CD phasing.
 - Will we need to vary the array phase during the pulse?
 - Will we need to operate in counter-CD phasing at high power?

What is the primary cause of power trips during plasma operation?

- Arcing due to pressure rise?
 - Outgassing?
 - Recycling?
 - Sheaths?
 - Present antenna diagnostics on C-MOD can give useful information.
- Degradation of antenna surfaces during plasma operation and/or machine conditioning?
- Trips due to rapidly changing plasma conditions?
- **RF/edge plasma interactions?**

Determine the cause of present voltage limitations

- Need to dedicate operation time to identifying power limitations (Experimental Machine Proposals).
- Possible diagnostics:
 - Fast visible camera
 - Fast pressure gauge in antenna box
 - Surface Langmuir probes in boron nitride
 - Floating probes, emissive probes in antenna
 - Light pipes in antenna boxes
 - IR cameras, thermocouples
 - Arc detection/localization system

Improve voltage limits on HHFW system

• Antenna array operation

- Develop better conditioning procedures
- Decouple transmitter arc protection from phase control

• Antenna array modifications

- Heating/baking antennas (hot coolant, heater tape, radiant heat)

• Antenna array redesign

- Double end-fed design \rightarrow lower voltages on straps
- Slanted straps \rightarrow reduce phase-dependent loading asymmetry
- One strap per transmitter \rightarrow simplify system & improve phase control
- High voltage prototype antenna to be tested on UCLA Electric Tokamak may yield information to aid in design.

Summary

- HHFW has obtained good physics results, needs to extend operation to higher power, longer pulses.
- Power is at present limited by antenna voltage.
 - Determine the cause
 - Additional diagnostics
 - Dedicated XMPs
 - Effect a solution
 - Improve performance of present array
 - » Conditioning
 - » Operating scenarios
 - » Detach arc protection from phase control
 - Modify present array
 - » Bakeout, operating temperature
 - Design new array
- Understand the interaction with edge plasma.
- Incorporate knowledge gained from other experiments (C-Mod, ET, JET, Asdex-U, DIII-D ...)

