BOUT:

Boundary Turbulence Simulations and Validations for NSTX

X.Q.Xu

Lawrence Livermore National Laboratory University of California Livermore, CA 94550, USA

Presented at the NSTX 5 Year Plan Workshop June 24-26, 2002 Princeton, New Jersey

BOUT is 3D EM Boundary Plasma Turbulence Code

- Braginskii --- collsional, two-fluids electromagnetic equations
- Realistic X-point geometry
 - → open+closed flux surfaces
- BOUT is being applied to DIII-D, C-mod, NSTX, ITER (for Snowmass), ...
- There is LOTS of edge fluctuation data!
 - → GPI offers the fastest and the highest resolution images of edge turbulence.
- ⇒ An excellent opportunity for validating BOUT against experiments.

A suite of the codes work together to make BOUT simulation results similar to real experiments

BOUT shows similar frequency spectrum as Gas Puff Image

Planned extensions of BOUT enhance its full capabilities toward simulating boundary physics on first principle

Density Limit: High collisionality affects fluctuation: level/transport 1 and parallel correlation length

Planned Physics Studies

Use BOUT simulations to address critical issues in boundary plasma stabilities, turbulence and transport

- Edge Pedestal: Formation, structure, stability
- Physics of ELMs in the presence of sheared flow, diagmagnetic effects, and bootstrap current
- Physics of density limit: role of flows, burst transport, atomic and sheath physics
- Active controls of spreading heat flux on divertor floor by biasing