ELM Studies in NSTX - Needs: Experiments and Measurements

C. E. Bush Oak Ridge National Laboratory

- (1) ELM behavior on NSTX
- (2) Important ELM studies
- (3) Required diagnostics and plans

Transport Breakout Session NSTX Five Year Plan Ideas Forum Princeton Plasma Physics Laboratory Princeton, June 25, 2002

Wide Spectrum of ELM Characteristics Realized on NSTX

ornl

Large ELMs dump edge plasma and effect is radially deep into plasma

What ELM Studies are Needed?

Keep in mind:

- ELM studies have just begun on NSTX
- Need control of ELM parameters, divertor loading, accumulation
- Must scale ELM behavior to next generation ST and ST reactor
- Is ELM behavior the same for Tokamak and ST?

Studies needed:

- Stability Determination of precursors Mode numbers, n
- Scaling of energy loss per ELM
- Particle loss per ELM n_e and impurity control
- ELM control Variation of ELM with ST scenario

Studies, Measurements, and Plans:

ELM Stability (Only measurements - Talk by P. Snyder follows):

- Theory for ELM trigger Combined ∇p and J(edge) / n-number
 - MSE or calculate bootstrap from edge n_e , T_e , T_i profs.
 - Mode number of any precursors Magnetics, USXR, BES, other?
- New possible precursor detection using GPI

ELM Losses ⇒ Measure power and particles expelled:

- ⇒ Important for wall loading at divertor plate
- Fast n_e, T_e, T_i measurements ⇒ across ELM (Thomson, CHERS, and edge scanning reflectometer)
- Fast magnetics ⇒ Reconstruct equilibrium

Diagnostic Schedules drive 5 yr plan for ELMs:

Fast n_e , T_e , T_i measurements

- Thomson Future (2004), 45 points, 3 lasers for 90 Hz, 5 to 7 mm resolution.
- CHERS Ultimately 10 msec, resolution at edge of few mm.
- Divertor IR camera, 1D CCD camera, reflectometer, GPI
- MSE 10 channels (Year 2003)

