PLANS FOR FAST PARTICLE PHYSICS AND ITS MODELING IN NSTX

presented by

N. N. Gorelenkov

Princeton Plasma Physics Laboratory

5 Year Plan Ideas Forum PPPL, Princeton, June, 2002

NSTX

PPPL

- 1. Single particle physics
 - ✓ Prompt losses
 - ✓ Ripple losses
- 2. Collective phenomena:
 - ✓ New, due to fast particles, plasma oscillations:
 - CAEs, TAEs, Fishbones, KBMs.
 - ✓ Effects on present phenomena in the plasma & plasma transport
 - sawteeth, tearing modes, energy channeling from NBI to plasma

NSTX

PPPL

✓ New regimes require recoding of older and meet in new codes:

- Low aspect & Large trapped particle population
- Large Larmor radius $\rho_{Lb}/a \sim 1/5 1/3$
- Wide drift orbits $\Delta_b/a \sim (q/\epsilon)(\rho_{Lb}/a) \sim 1/3 1/2$
- Low Alfvén speed $v_A \ll v_{b0}$
- Magnetic well presence
- Anisotropic equilibrium
- ✓ Need to be coupled to experiments (TRANSP, diagnostics).
- ✓ Fortunate similarity in beam ions in NSTX and Alpha particles in DT ST: Δ_b/a , v_A/v_b .

Numerical codes at PPPL for hot ion collective effects study

NSTX

PPPL

Linear analysis

	Low-n	Med-n	High-n	FOW	FLR	Landau	cont-radiative	perturbative
NOVA(-K)	х	х		Х	($lpha$'s)	х		Yes
HINST		Х	Х		mode	Х	Х	No
HINST has been herebrarked against NOV/A for modium n numbers								

HINST has been benchmarked against NOVA for medium n numbers.

?? Open question for EPM/RTAE modes at low-n & strong drive.

NOVA is well updated for TAE study in ST.

NOVA needs FLR corrections included & nonperturbative strong drive.

Nonlinear analysis

	Low-n	Med-n	High-n	FOW	FLR	perturbative	multimode	method
ORBIT	Х			Х			Х	δ -f
	V	V		V	$(\alpha' \alpha)$	X		nonlinear
NOVA-K	X	X		X	(αs)	X		BB theory
MH3D	х	x		Х				fully nonlinear
HYM	Х	x		Х	Х		Х	fully nonlinear

Low frequency modes can cause NBI ion losses

NSTX

PPPL

Low- and high- beta Alfvén Gap Structure for n=3

✓ In high beta $\langle \beta \rangle = 33\%$ plasma TAE gap is not closed.

 Recent observations of strong TAE activity in NSTX with multiple modes indicate losses (E. Fredrickson) TAE's effect on beam ions

NSTX

PPPL

Use ORBIT & collisional scattering.

Choose most unstable modes for each case.

TAEs amplitude was taken the same with ${\tilde B}_{ heta}/B\simeq 10^{-3}$

Low
$$q_0 = 0.4$$
, $\langle \beta \rangle = 10\%$

losses,% $ ightarrow$	prompt	$+n=1~\mathrm{TAE}$	
no FLR	9	11	
with FLR	29	31	

✓ High
$$q_0 = 2.8$$
, $\langle \beta \rangle = 15\%$

losses,% $ ightarrow$	prompt	+n = 1	n = 1 & $n = 3$
no FLR	1	2	
with FLR	24	30	35

Magnetic well and strong edge poloidal magnetic field helps particle confinement at high beta.

Plans for codes development for fast ion study in NSTX (Low frequency codes)

NSTX

PPPL

Low frequency modes TAE, KBMs:

- 1. Linear codes show growth in case of TAEs $\gamma/\omega > 10\%$ (compare with ITER TAE problem).
 - \checkmark Trapped kinetic electron are important as a damping mechanism through E_{\parallel}
- 2. \Rightarrow nonperturbative linear codes like NOVA2 are required (2-5 years program).
- 3. HINST for KBM and RTAE with full kinetic treatment (1-3 year).
- 4. Applications of HYM and M3D for NSTX problems should be broader (near to longer term).
- 5. ORBIT will include different types of fishbone dispersion relations: precession drift, bounce frequency branches.
- 6. Couple ORBIT/GYROXY with nonperturbative codes for faster simulations (1-3 year).

Can CAE explain $T_i > T_e$, observed in NSTX by CHERS? PPPL

✓ Unphysical power balance results with present data set if only classical collisional processes are considered (beam heating, ion-electron coupling).

 Experimental study of anomalous ion temperature increase with and without CAEs is in progress.

Plans for codes development for fast ion study in NSTX (High frequency codes)

NSTX

PPPL

- 1. Linear code need to be developed (borrowed) to address and compare with theory CAE types of modes:
 - $\checkmark \omega_c/\omega$ corrections to MHD
 - \checkmark resonances with fast particles
 - ✓ realistic equilibrium (fast solvers, ESC like)
 - \checkmark distribution function of beam ions and thermal ions.
- 2. Nonlinear high frequency code, such as HYM, is needed to correctly model CAE and GAE in NSTX including effects like
 - \checkmark particle cyclotron resonances with modes
 - ✓ multi-mode interaction with background plasma to demonstrate the energy channeling from beam ions to thermal ions.
- 3. Codes need to be benchmarked against experiments.