Study of Physics Issues Related to Astrophysics in NSTX

Hantao Ji *Princeton Plasma Physics Laboratory*

Five Year Plan Ideas Forum June 24-26, 2002

Why Plasma Astrophysics in NSTX?

- Physics-oriented research complements performance-oriented research
- Enhance impact of NSTX research on astrophysics
- May bring in new ideas and concepts as in the past

Example: Magnetic Reconnection

• In Space and astrophysics:

- Earth and planet magnetospheres
- Coronal activities on star surfaces
- Accretion disks
- In NSTX:
 - IRE (minor or major disruptions?)
 - CHI (current/helicity transport)
- Issues can be studied in NSTX
 - Kinetic effects (ρ_i dependence)
 - Effects of pressure gradient
 - 2D versus 3D reconnection (in CHI and IRE)
- Needed resources
 - Internal magnetic diagnostics and imaging
 - Dedicated theory+simulation
- Impact on NSTX
 - Avoidance of IRE
 - Better understanding CHI and its applications

Example: Angular Momentum Transport

- In Space and astrophysics:
 - Differential rotation in solar convection zone
 - Accretion disk
- In NSTX:
 - Measured significant toroidal flows
- Issues can be studied in NSTX
 - Reynolds stress versus magnetic Reynolds stress
 - Effects of low aspect ratios
- Needed resources
 - Diagnostics of flow and fluctuations
 - More momentum source (NBI) and its flexibilities
 - More theory+simulation
- Impact on NSTX
 - May be related to high ion temperatures
 - May be related to formation of diamagnetic cores

Example: Dynamo Effect and Helicity Transport

- In Space and astrophysics:
 - Origin of magnetic field
 - Self-organization nature of magnetic field (e.g. solar magnetic field)
- In NSTX:
 - CHI
 - **IRE**?
- Issues can be studied in NSTX
 - Mechanisms based on MHD or physics beyond MHD
 - Relations between dynamo effect and helicity conservation
- Needed resources
 - Fluctuation diagnostics at edge and core
 - Current drive capability and flexibilities
 - More theory+simulation
- Impact on NSTX
 - Better understanding and ideas for non-inductive startups
 - May lead to confinement improvement during CHI

Dynamo Effect and Helicity Transport: A Proposed Probe Head

In collaboration with UCSD (J. Boedo and G. Tynan)

Probe to Measure Many Important Effects due to Magnetic Fluctuations

• The terms responsible for dynamo effects are

• In addition, the probe can measure toques due to fluctuations for studies of angular momentum transport

- More physics-oriented milestones in next 5 years
 e.g. understand IRE in 5 years?
- Many physics issues related to astrophysics can be studied in NSTX
- Understanding these issues can help NSTX
- Need dedicated efforts and resources to make real progress and establish effective collaborations
 - e.g. joint research projects and programs
 - setup a small budget (e.g. \$200k) each year as a seed money to foster new physics ideas (e.g. \$50k/idea) through peer-reviewed competitions of 1-2 page proposals (w/ G. Tynan)