

Integrating Plasma Performance Enhancements

NSTX has ambitious goals

"Integrate high confinement and high beta" (IPPA 3.2.1.6)

"...assessing high-beta stability, confinement, self-consistent high-bootstrap operation, and acceptable divertor heat flux, for pulse lengths much greater than energy confinement times" (FESAC 5-year Objective #2.1)

- Already have Milestone FY03-2:
 - "... beta near the "no-wall" limit simultaneously with high energy confinement for durations >> τ_E "
 - Requires $\beta_T \approx 30\%$, H ~ 2, t ~ 200ms
- Future milestones will extend goal to 5s pulse
 - Add requirements for high bootstrap fraction
 - Can only be achieved at $B_T \le 0.3T$ with present CS
 - Efficient non-inductive current drive needed
 - Energy input will become an issue

Active Controls Needed

- Stabilization
 - Ideal modes p(r), q(r), wall influence
 - RWM error field reduction, control
 - NTM control of local p'
- Current drive and non-inductive startup
 - Efficiency counts against τ_{E}
 - HHFW parasitic interaction with fast ions
 - Localization
 - Role of CHI
 - Controllability
- Density control
 - Localized internal fueling: pellets, CTs
 - Wall material changes: tiles, coatings
 - Edge pumping: cryo-pump, lithium module

Active Controls (2)

- Power handling
 - Enhanced edge radiation
 - Intrinsic impurities
 - Recycling gases
 - Strike point sweeping
 - Edge ergodization or segmented biasing
 - MAST example