Heat and Particle Pinches from Beam-Ion Friction

W. A. Houlberg ORNL K.C. Shaing, J.D. Callen U. Wis-Madison

NSTX Five Year Plan Workshop 24-26 June 2002 Princeton, New Jersey

Oak Ridge National Laboratory U. S. Department of Energy

Motivation

- Present models for neutral beam injection (NBI) in major transport codes routinely include the following effects on the thermal plasma:
 - Prompt source of thermal electrons
 - Delayed source of thermal ions (after slowing down)
 - Energy source to thermal ions and electrons during slowing down
 - Net toroidal torque to thermal ions when injection is unbalanced toroidally
 - Non-inductive current drive
- But anomalies result when these models are used to analyze some present plasmas with strongly reduced turbulence and unbalanced NBI:
 - Negative effective ion thermal conductivity with co-NBI in NSTX
 - Ion thermal conductivity below standard neoclassical in ITBs
- Additional effects of unbalanced NBI, estimated in various theoretical treatments since the early '70s, suggest that physics missing in the analysis codes might provide an explanation:
 - Neoclassical particle and energy fluxes driven by the parallel friction and heat friction between fast ions on thermal ions
 - Viscous heating from poloidal rotation of thermal ions driven by the fast ions
- These are possibly stronger in NSTX with ~80keV NBI in ~1-2keV plasmas

Oak Ridge National Laboratory U. S. Department of Energy

Neoclassical Parallel Force Balances with NBI

S.P. Hirshman and D.J. Sigmar, *Nucl. Fusion* **21** (1981) 1079 W.A. Houlberg, K.C. Shaing, S.P. Hirshman and M.C. Zarnstorff, *Phys. Plasmas* **4** (1997) 3230

- In NCLASS we use the Hirshman-Sigmar formulation of neoclassical theory for a multiple species plasma.
- The flux surface averaged parallel force and heat force balance equations for thermal species j come from the odd velocity moments of the Boltzmann equation on a timescale t>>τ_{ii}:

$$\begin{array}{lll} \langle \vec{B} \cdot \vec{\nabla} \cdot \vec{\Pi}_j \rangle &=& \langle \vec{F}_{1,j} \cdot \vec{B} \rangle + \langle \vec{F}_{1,j}^b \cdot \vec{B} \rangle + e_j n_j \langle \vec{E} \cdot \vec{B} \rangle & \\ \langle \vec{B} \cdot \vec{\nabla} \cdot \vec{\Theta}_j \rangle &=& \langle \vec{F}_{2,j} \cdot \vec{B} \rangle + \langle \vec{F}_{2,j}^b \cdot \vec{B} \rangle & \\ \hline \text{Viscous} & & \hline \text{Thermal} & \hline \text{Beam} & \text{Ohmic} \\ \hline \text{Friction} & \hline \text{Friction} & \\ \end{array}$$

- The beam friction terms provide a parallel force on the thermal species:
 - That is analogous to the thermal friction terms (between two thermal species)
 - That acts to drive fluxes just as the force from the parallel electric field drives fluxes (Ware pinch)

The Thermal Friction and Viscous Forces are Functions of the Parallel and Poloidal Flows

• Classical parallel friction forces between thermal species:

$$\langle \vec{F}_{\alpha,j} \cdot \vec{B} \rangle = \sum_{k} \sum_{\beta} \ell_{\alpha\beta}^{jk} \hat{u}_{\parallel\beta,k}$$
Thermal friction coefficients
$$\hat{u}_{\parallel 1,j} \equiv \langle \vec{u}_j \cdot \vec{B} \rangle$$
Friction forces are a
function of the parallel
flows of all species
$$\hat{u}_{\parallel 2,j} \equiv \frac{2}{5} \frac{\langle \vec{q}_j \cdot \vec{B} \rangle}{p_i}$$
Parallel flow
Parallel heat flow

• Neoclassical parallel viscous forces for thermal species:

$$\langle \vec{B} \cdot \vec{\nabla} \cdot \vec{\Pi}_j \rangle = \langle B^2 \rangle \sum_{\beta} \hat{\mu}_{1\beta,j} \, \hat{u}_{\theta\beta,j}$$

$$\langle \vec{B} \cdot \vec{\nabla} \cdot \vec{\Theta}_j \rangle = \langle B^2 \rangle \sum_{\beta} \hat{\mu}_{2\beta,j} \, \hat{u}_{\theta\beta,j}$$
Thermal viscosity coefficients
$$\hat{u}_{\theta1,j} \equiv \frac{\langle \vec{u}_j \cdot \vec{\nabla} \theta \rangle}{\langle \vec{B} \cdot \vec{\nabla} B \rangle}$$
Poloidal flow
$$\hat{u}_{\theta2,j} \equiv \frac{2}{5} \frac{1}{p_j} \frac{\langle \vec{q}_j \cdot \vec{\nabla} \theta \rangle}{\langle \vec{B} \cdot \vec{\nabla} B \rangle}$$
Poloidal heat flow

• Kinetic theory provides the viscosity and friction coefficients

The Radial Force Balances Relate the Poloidal and Toroidal Flows to T', p', and Φ '

The radial force balance equation for each odd velocity moment (α=1,2,3) relates the flows within a surface to gradients of flux surface quantities (driving forces):

$$\langle B^2 \rangle \hat{u}_{\theta\alpha,j} = \hat{u}_{\parallel\alpha,j} + S_{\theta\alpha,j} \quad \alpha = 1, 2, 3$$

$$S_{\theta1,j} = \frac{2\pi RB_t}{\Psi'} \left(\frac{p'_j}{e_j n_j} + \Phi' \right)$$

$$S_{\theta2,j} = \frac{2\pi RB_t}{\Psi'} \frac{kT'_j}{e_j}$$

- This allows us to eliminate the toroidal flows and solve a matrix of equations for the poloidal flows for each charge state j
- The addition of NBI friction and heat friction terms leads to a modification to the poloidal flows (and the toroidal flows through the radial force balances), and consequently the other neoclassical transport properties

Neoclassical Particle and Heat Fluxes with NBI

• The banana plateau (BP) fluxes are related to the poloidal flows:

$$\begin{split} \Gamma_{j}^{\mathrm{BP}} &= -\frac{2\pi RB_{t}}{\Psi' e_{j}} \sum_{\beta} \hat{\mu}_{1\beta,j} \left(\hat{u}_{\theta\beta,j}^{nc} + \hat{u}_{\theta\beta,j}^{b} \right) \\ q_{j}^{\mathrm{BP}} &= -\frac{2\pi RB_{t}kT_{j}}{\Psi' e_{j}} \sum_{\beta} \hat{\mu}_{2\beta,j} \left(\hat{u}_{\theta\beta,j}^{nc} + \hat{u}_{\theta\beta,j}^{b} \right) \end{split}$$
Flows of thermal species driven by NBI modify BP

- Importance relative to standard neoclassical is governed by the ratio of induced poloidal flows
- The Pfirsch-Schlüter (PS) fluxes are related directly to the forces:

$$\Gamma_{j}^{\mathrm{PS}} = \frac{2\pi RB_{t}}{\Psi' e_{j}} \Big[1/\langle B^{2} \rangle - \langle B^{-2} \rangle \Big] \Big[\langle \vec{F}_{1,j} \cdot \vec{B} \rangle + \langle \vec{F}_{1,j}^{b} \cdot \vec{B} \rangle \Big]$$

$$RBI \text{ friction and he friction modify PS}$$

$$q_{j}^{\mathrm{PS}} = \frac{2\pi RB_{t}kT_{j}}{\Psi' e_{j}} \Big[1/\langle B^{2} \rangle - \langle B^{-2} \rangle \Big] \Big[\langle \vec{F}_{2,j} \cdot \vec{B} \rangle + \langle \vec{F}_{2,j}^{b} \cdot \vec{B} \rangle \Big]$$

$$NBI \text{ friction modify PS}$$

- Importance relative to standard neoclassical governed by the ratio of forces

• All of the NBI terms are inward with co-injection, outward with counterinjection (testable by co-/counter-NBI comparisons)

heat

The Radial Force Balances with NBI

• Radial force balance equations in terms of parallel and poloidal flows:

$$\begin{split} \langle B^2 \rangle \Big[\hat{u}^{nc}_{\theta 1,j} + \hat{u}^b_{\theta 1,j} \Big] &= \Big[\hat{u}^{nc}_{\parallel 1,j} + \hat{u}^b_{\parallel 1,j} \Big] + \frac{2\pi RB_t}{\Psi'} \Big[\frac{p'_j}{e_j n_j} + \Phi' \Big] \qquad \text{Force} \\ \langle B^2 \rangle \Big[\hat{u}^{nc}_{\theta 2,j} + \hat{u}^b_{\theta 2,j} \Big] &= \Big[\hat{u}^{nc}_{\parallel 2,j} + \hat{u}^b_{\parallel 2,j} \Big] + \frac{2\pi RB_t}{\Psi'} \frac{kT'_j}{e_j} \qquad \text{Heat force} \end{split}$$

Poloidal flow induced by NBI (typically only use neoclassical value) Parallel flow induced by NBI (typically use measured total toroidal flow)

- NBI effects on poloidal rotation should be considered when:
 - Determining the radial electric field using the radial force balance with theoretical models for the poloidal rotation
 - Comparing measured poloidal rotation with theoretical models

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Viscous Heating with NBI

• The neoclassical viscous heating is enhanced as the square of the poloidal flow velocities:

$$P^{\rm BP}_{\mu,j} = \hat{u}_{\theta 1,j} \langle \vec{B} \cdot \vec{\nabla} \cdot \vec{\Pi}_j \rangle$$

= $\left[\hat{u}^{nc}_{\theta 1,j} + \hat{u}^b_{\theta 1,j} \right] \langle B^2 \rangle \sum_{\beta} \hat{\mu}_{1\beta,j} \left[\hat{u}^{nc}_{\theta\beta,j} + \hat{u}^b_{\theta\beta,j} \right]$

Poloidal flow from NBI modifies poloidal viscous heating

- In addition to this are heating terms from classical (small) and toroidal viscosity (e.g., Stacey's gyroviscosity, turbulence induced viscosity, ...)
- Viscous heating is likely important for:
 - ITBs with strong pressure gradients
 - Strong toroidal rotation (NSTX)

NBI Friction and Heat Friction Terms

S.P. Hirshman and D.J. Sigmar, *Nucl. Fusion* **21** (1981) 1079 J.P. Wang, M. Azumi, K. Tani, J.D. Callen, *Nucl. Fusion* **34** (1994) 231

• The general expressions for the NBI friction terms are expressed in terms of Laguerre polynomials:

$$\begin{aligned} \vec{F}_{1,j}^{b} &= \int d^{3}v \, m_{j} \vec{v} L_{0}^{(3/2)}(x_{j}^{2}) C_{jb}[f_{j}, f_{b}] \\ \vec{F}_{2,j}^{b} &= -\int d^{3}v \, m_{j} \vec{v} L_{1}^{(3/2)}(x_{j}^{2}) C_{jb}[f_{j}, f_{b}] \\ L_{0}^{(3/2)}(x_{j}^{2}) &= 1 \\ L_{1}^{(3/2)}(x_{j}^{2}) &= \frac{5}{2} - x_{j}^{2} \\ x_{j} &= v/v_{tj} \\ v_{tj} &= \left(\frac{2kT_{j}}{m_{j}}\right)^{1/2} \end{aligned}$$

Coulomb Collision Operator

J.P. Wang, M. Azumi, K. Tani, J.D. Callen, Nucl. Fusion 34 (1994) 231

 The Coulomb collision operator can be written in terms of the Fokker-Planck coefficients, which are in turn expressed in terms of the Rosenbluth potentials

$$C_{jb}[f_j, f_b] = -\vec{\nabla}_v \cdot \left[\vec{A}_{jb}f_j - \frac{1}{2}\vec{\nabla}_v \cdot \left(\vec{D}_{jb}f_j\right)\right]$$
$$\vec{A}_{jb} = \left(1 + \frac{m_j}{m_b}\right)\gamma_{jb}\vec{\nabla}_v h_b$$
$$\vec{D}_{jb} = \gamma_{jb}\vec{\nabla}_v\vec{\nabla}_v g_b$$

$$egin{array}{rcl} \gamma_{jb} &=& rac{4\pi}{(4\pi\epsilon_0)^2} rac{e_j^2 e_b^2 \ln\Lambda_j}{m_j^2} \ h_b &=& \int d^3 v' rac{f_b(v')}{|ec v-ec v'|} \ g_b &=& \int d^3 v' f_b(v') |ec v-ec v'| \end{array}$$

UT-BATTELLE

Test Particle Distribution with Flows

J.P. Wang, M. Azumi, K. Tani, J.D. Callen, Nucl. Fusion 34 (1994) 231

• For the thermal particle distribution we keep the flow and heat flow perturbations from the Maxwellian:

$$f_{j}(v) = \left[1 + \frac{2\vec{v} \cdot \vec{u}_{j}}{v_{tj}^{2}} L_{0}^{(3/2)}(x_{j}^{2}) - \frac{2\vec{v} \cdot \vec{q}_{j}}{v_{tj}^{2} p_{j}} \frac{2}{5} L_{1}^{(3/2)}(x_{j}^{2})\right] f_{0j}$$

$$f_{0j} = \frac{n_{j}}{\pi^{3/2} v_{tj}^{3}} e^{-x_{j}^{2}}$$

• Except for the work of Wang, et al, the the flow corrections are usually ignored for the thermal ions.

Thermal Electron-NBI Terms

J.P. Wang, M. Azumi, K. Tani, J.D. Callen, Nucl. Fusion 34 (1994) 231

 For the thermal electrons we assume v >> v', therefore the only information needed for the beam ions is the total fast ion density, and the friction is expressed in terms of the electron flow and heat flow:

$$\begin{split} \vec{F}_{1,e}^{b} &= -\frac{m_{e}n_{b}}{\tau_{eb}} \left(\vec{u}_{e} - \vec{u}_{b} - \frac{3}{5} \frac{\vec{q}_{e}}{p_{e}} \right) \\ \vec{F}_{2,e}^{b} &= \frac{m_{e}n_{b}}{\tau_{eb}} \left(\frac{3}{2} \vec{u}_{e} - \frac{3}{2} \vec{u}_{b} - \frac{13}{10} \frac{\vec{q}_{e}}{p_{e}} \right) \\ \frac{1}{\tau_{jb}} &= -\frac{4}{3\pi^{1/2}} \frac{m_{j}n_{j}\gamma_{jb}}{v_{tj}^{2}} \end{split}$$

• Taking the flux surface average of the force parallel to B and using the normalized flows yields:

$$\langle \vec{F}_{1,e}^{b} \cdot \vec{B} \rangle = -\frac{m_{e}n_{b}}{\tau_{eb}} \left(\hat{u}_{\parallel 1,e} - \hat{u}_{\parallel 1,b} - \frac{3}{2}\hat{u}_{\parallel 2,e} \right)$$

$$\langle \vec{F}_{2,e}^{b} \cdot \vec{B} \rangle = \frac{m_{e}n_{b}}{\tau_{eb}} \frac{3}{2} \left(\hat{u}_{\parallel 1,e} - \hat{u}_{\parallel 1,b} - \frac{13}{6}\hat{u}_{\parallel 2,e} \right)$$

UT-BATTELLE

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Thermal Ion-NBI Terms

Theory Under Development

- Existing theoretical models have limitations for quantitative applications:
 - The work of Wang, et al., assumes an isotropic distribution in the rest frame of the fast ions, which is not appropriate for unbalanced NBI.
 - Hinton and Kim approximate the parallel force using the toroidal torque, and don't include the heat friction.
 - All the theoretical estimates assume simplified forms for the fast ion distribution function.

- ...

- Work on evaluating the ion integrals (tedious) using NSTX geometry and NBI distributions is in progress:
 - Improve the approximate theoretical estimates for the NBI friction and heat friction terms for input to NCLASS
 - Apply to NSTX using NCLASS in FORCEBAL and TRANSP

Summary of NBI Driven Neoclassical Effects

- There is an extensive literature on the theory for NBI driven neoclassical fluxes and viscous heating
- Various of these analyses have shown the effects are comparable to the standard neoclassical effects
- Much of that literature considers individual effects and approximations
 that can be treated more comprehensively
- These effects should be most visible in experiments with unbalanced NBI
 when turbulence induced transport is suppressed
 - NSTX cases where negative effective ion thermal conductivity is inferred
- The primary work for a quantitative study would be to evaluate the parallel NBI friction and heat friction in TRANSP for input to NCLASS

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Other Extensions to Neoclassical Theory for NSTX

- The low aspect ratio and toroidal field in NSTX limit the applicability of other approximations used in standard neoclassical theory:
 - Small banana width compared with system size
 - Addressed by potato orbit models near the axis (which vary in their predictions of whether thermal ion transport is enhanced, decreased or unaffected)
 - Small gyroradius compared to banana width
 - » Classical and neoclassical effects become comparable in NSTX and theory/models might have to be revised
- Our approach is to watch for indications in NSTX of deviations from standard neoclassical theory, and extend the theory and models as necessary.
- The most vulnerable elements of standard neoclassical theory in NSTX are:
 - Ion thermal transport
 - Impurity transport
 - NBI current drive
 - Bootstrap current

