Fast visible imaging of edge plasmas for wall condition studies

R. Maqueda, and the NSTX edge group

Motivation:

Wall conditions (for example, boronized walls), and by extent plasma-surface interactions, are a known buy yet not well understood variable for accessing improved confinement regimes.

Proposal:

Use a fast-framing (\geq 1 kHz), visible, intensified digital camera to quantify and study the surface conditions and plasma interactions that lead, or not, to improved confinement.

Hardware upgrades:

- Remote controlled filter wheel for Kodak camera.
- Upgrade coherent fiber bundle.
- Develop zoom/steering remote-controlled optics.

Infrared imaging of plasma facing surfaces, heat load reduction development

R. Maqueda and the NSTX edge group

• Desired measurements

- Heat loads on plasma facing components including the divertor surfaces and limiters.

- Localization of hot spots, possible sources of impurities.

- Heat loads due to ELMs and IREs.

- Access fast particle loss physics.

• Hardware

- Use video camera sensitive in the mid IR range: 3-5 μ m, with > 1 kHz resolution.

- Use IR periscopes based in ZnSe optics to transport the image to the IR camera.

- Heat load reduction development Important for extended pulses at high heating power.
 - Divertor detachment radiative divertor.
 - Radiative mantles.
 - Strike point sweeping.

