Kinetic simulation plan for the NSTX edge

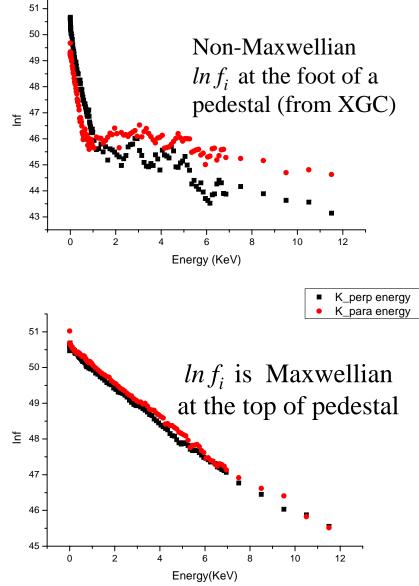
C.S. Chang, NYU on behalf of

VSTX

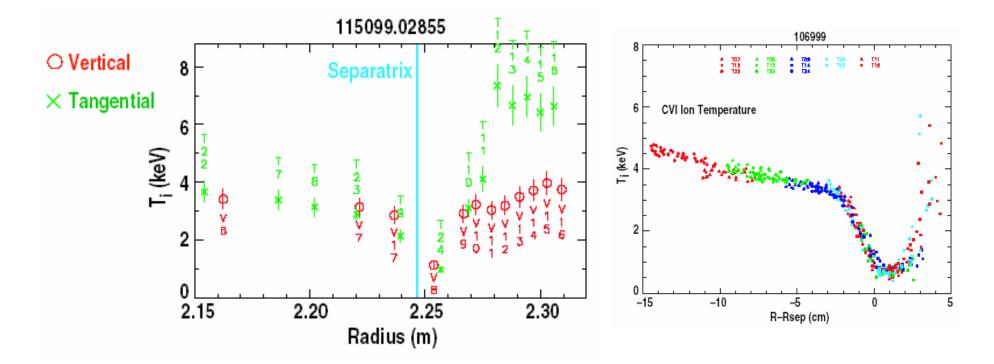
Center for Plasma Edge Simulation

NSTX Boundary Physics Five Year Planning Meeting

Princeton, NJ February 12, 2007

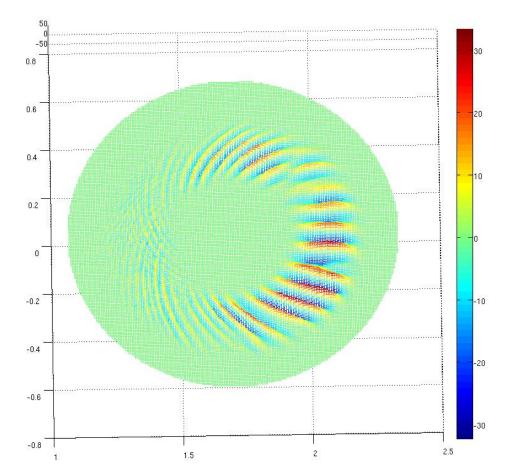

CPES can help understand kinetic edge physics in a spherical torus

- Analyze and predict
 - 1. L-H transition, pedestal growth, shape and height, SOL flow, turbulence & transport, ELM properties, ELM cycle, wall load, etc.
 - 2. Difference with higher aspect ratio tokamaks and scaling to ITER
- NSTX specific application requires emphasis of classical physics (large gyroradius at low-B side)
- The collaboration should start with code validation
 - Turbulence property (k & ω spectrum) at L-H transition
 - Density, temperature, rotation profile property in L and H
 - Pedestal scaling
 - Neutral density distribution (XGC-DEGAS2)
 - Wall load distribution change with $V_{\nabla B}$ direction change


Edge plasma is kinetic

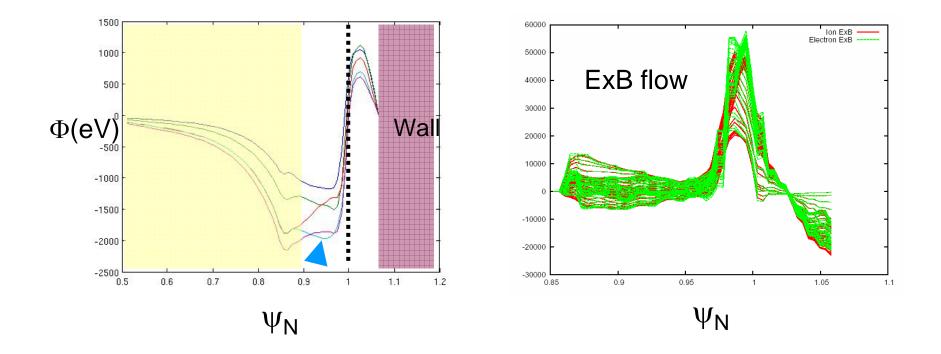
K_perp energyK_para enegy

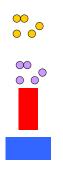
- Edge ions are mostly non-Maxwellian ⇒Kinetic
- Excellent scalability of a 5D PIC simulation to high performance computers
- Arbitrary wall shape with PIC

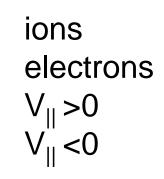


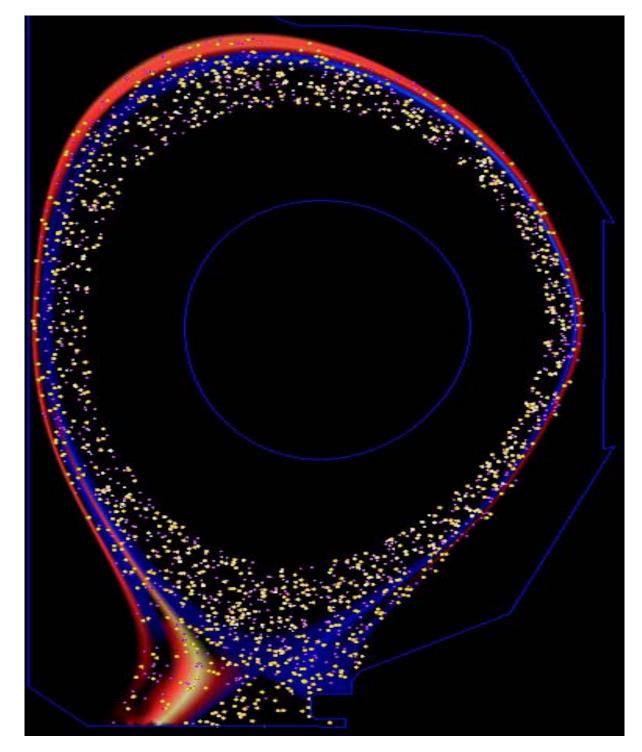
Experimental evidences of anisotropic non-Maxwellian edge ions (K. Burrell, APS 2003)

XGC will have edge electrostatic turbulence capability this year for L-H transition study


- 1. Verify the ITG capability in the cyclone plasma
- 2. Move the simulation to realistic NSTX edge
- 3. Both neoclassical and turbulence effect will be simulated together
- 4. Collisional particle noise reduction


NSTX


Liner ITG mode growth in cyclone geometry from XGC1


Strongly sheared ExB flow with a strong edge pedestal ⇒ Suppression of turbulence in H-mode

Particle motions in poloidal plane in a quiescent H-mode profile edge

CPES Physics Research Roadmap

	Pre-CPES	2006	2007	2008	2009	2010	
Edge Kinetic code	XGC0, Full-f ions with 1D E _r solver	XGC1, Full-f ions & electrons, Axi-symmetr 2D solver (E_r, E_{θ})	XGC1, Full-f, elect turbulence ic entire edg Enhance XGC0 with Electrons & DEGAS2	e in the		ce code Develop coupling to core code	
Physics Research	First 1D neoclassical ion edge solution, with pedestal buildup by neutrals	First 2D neoclassical kinetic solution in the entire edge	Edge rotation physics. Ripple and error field effects on pedestal, rotation & ELM	Study with co capabi an MH	Study L-H transition Study pedestal-ELM cycle with concurrent turbulence capability (in integration with an MHD/ELM code) Study core-edge coupled physics		