Non-axisymmetric coils for pedestal and divertor heat flux control

123301 at t=3.0s

T. E. Evans General Atomics 2007 NSTX Boundary

February 12, 2007

Workshop

GENERAL ATOMICS

Normalized radius

Why install non-axisymmetric edge RMP coils on NSTX?

- Edge localized Resonant Magnetic Perturbations (RMPs) can be used to control:
 - density, temperature, pressure and rotation profiles
 - MHD instabilities (ELMs)
 - transport barrier properties (E_r, turbulence)
 - H-mode power thresholds
 - Impurities, radiation, cx,
 - Divertor power deposition profiles (2x spreading demonstrated)
- Control of the edge plasma opens up possibilities for:
 - improved operating regimes
 - new physics discoveries
- The RWM/EF coil is not optimized for edge control application
 - large core perturbations
 - poor poloidal and toroidal mode number flexibility

Edge RMP coils provide unique physics and technology opportunities

- ITER and burning plasma pedestal, SOL and divertor solutions:
 - ELMs (including pedestal profile control)
 - Core T_e control: $\Delta T_e^{ped} = 0.1 \text{ keV} \rightarrow \Delta T_e^{core} = 1.0 \text{ keV}$ (stiff profile)
 - Density, radiation (impurity?) and recycling control
- High divertor heat flux control in future burning plasma deviced
- Stellarator boundary physics and control
- Fundamental physics studies
 - Transport barriers (turbulence, E_r, momentum, etc.)
 - Separatrix splitting, bifurcations and stochasticity
- Validation of 3D physics models in numerical codes

Divertor heat flux spreading during I-coil pulses in DIII-D consistent with TRIP3D-E3D modeling

- During n=3 I-coil pulses in DIII-D the divertor heat flux:
 - Splits into a double peak structure
 - Peak heat flux reduced ~2x
 - Structure is non-axisymmetric
 - Consistent with separatrix splitting due to applied RMP
- Linear time averaged radial divertor profile produced when the RMP is slowly rotated
- Qualitative heat flux structure matches TRIP3D-E3D modeling
- An optimized RMP coil design is expected to produce ~4x reduction in the peak heat flux in NSTX

tee-07NSTXBWS-4/7

Pedestal profiles and ELMs are controlled using n=3 RMPs in DIII-D

tee-07NSTXBWS-5/7

Examples of several internal and external nonaxisymmetric RMP coil options for NSTX

- Internal Non-Axisymmetric (INA) coils:
 - 12 toroidal segments
 - multi-turn (low current)
 - DC -> 10 kHZ
- External Non-Axisymmetric (ENA) coils:
 - 12 toroidal segments
 - DC
- Design parameter optimization:
 - TRIP3D
 - SURFMN
 - NIMROD
- Heat flux modeling
 - E3D, EMC3-EIRENE

tee-07NSTXBWS-6/7

Additional comments

- ENA coils combined with INA coils are useful for understanding internal versus external RMP physics issues:
 - RMP ELM control coil design issues for ITER
 - Evaluate relative loss of high m modes with distance from plasmas
- ENA coils may be easier to install than INA coils
- INA coils can be based on a relatively simple design
 - Lower current (multi-turn)
 - Shorter pulse (2–3 sec.) –> water cooling not required
- Multiple power supplies needed
- Flexible patch panel design needed
- Density and ELM control may also be possible in NSTX with lithium walls and optimized RMP coils

