JHU diagnostic plans for 2009-2013

Plasma Spectroscopy-Diagnostics Group Johns Hopkins University

Presents: D. Stutman

Existing and planned diagnostics

Existing

•USXR and OSXR multi-energy (ME) arrays for fast T_e (n_e, n_z) in the core

- electron and impurity transport
- MHD perturbations (ELMs, EPMs, RWM)

Planned

•High-resolution tangential ME-SXR array for the pedestal (08-09)

- pedestal, ELM physics
- 'active' ELM control proposal (Stutman, Boundary meet.)

•Multi-energy VUV arrays for fast, 2-D divertor diagnostic (09-13) (to be prototyped within the Advanced Diagnostic program)

- total and spectral radiated power
- T_e, n_z, n_e (in conjunction with external constraints)
- particle control and transient events (Maingi, Boundary meet.)
- New ME-SXR diode arrays at two toroidal locations ?
 - RWM physics and control
 - replace aging USXR diode arrays (Tritz, MHD meet.)

High resolution tangential ME-SXR array for pedestal

- $T_e(r,t)$ with ≤ 1 cm, few µs resolution (n_e , n_z with $\int ne \, dl$ constraint)
- Extend core electron/particle transport studies to pedestal (ELM, pellet)
- ELM structure, precursors, non-thermal electron distribution
- Develop ME-SXR for feedback and control (ELM, position, RWM)

ME-VUV arrays for fast, 2-D divertor diagnostic

• Narrow-band (80-100 Å) 'radiometers' based on VUV TG + AXUV diodes

- 2-D T_e , n_z , n_e (in conjunction with TS, $\int n_e dI$, or spectroscopy constraint)
- Prototype edge/SOL array within Advanced Diagnostic program