

Low- and Intermediate-k Fluctuation Diagnostics

S. Kubota

NSTX 5 Year Planning Mini-Workshop February 27, 2007

NSTX 5 Year Planning Mini-Workshop, February 27, 2007

Ideas for Low- & Intermediate-k Measurements

List of Diagnostics and Measured Quantities

- Doppler Reflectometry
 - Fluctuations with intermediate-k selectivity (2-10 cm⁻¹, $\Delta k \sim 1$ cm⁻¹).
 - Time- and space-resolved (~100 μ s, ~1 cm) **velocity** and δ n/n.
 - > $\mathbf{E}_{\mathbf{r}}$ (ExB shear and connection to turbulence)
 - > v_{phase} (when $v_{ExB} \sim 0$, turbulence ID)
 - $> \delta \dot{\mathbf{v}}_{\mathbf{E}\mathbf{x}\mathbf{B}}$ (Zonal Flows, GAMs)
- Fast Radial-View Interferometry/Polarimetry Array
 - Chord-averaged $\delta n/n$ and with time response >3MHz.
 - > Coherent modes and turbulence.
 - $\delta \Psi$ proportional to chord-averaged δB_r (when beam is through axis).
 - > Comparison with calculations for Alfven eigenmodes.
 - J_0 and δJ_0 from d Ψ /dz. Constraint to EFIT. Complements MSE.
- HHFW Measurements Heterodyne Correlation Reflectometry
 - Space- and time-resolved measurements of fluctuations up to f~50 MHz.
 - > Quantify HHFW fluctuations in the core plasma at Bay J and interaction processes (mode conversion, turbulence scattering).
 - $\delta n/n$ by comparison of specular reflection and RF sidebands.
 - $\mathbf{k}_{\mathbf{r}}$ measurements from radial correlation.

Principles of Doppler Reflectometry

wavevector selection: (Bragg condition)

$$K_{\perp} = 2k_0 \sin\left(\theta_{\text{tilt}}\right)$$

wavevector resolution:

(Gaussian beam: $w=e^{-1}$ width of amplitude)

$$\delta K_{\perp} = 2\sqrt{2}/w$$

frequency shift (-1 order):

$$\Delta \omega = \overrightarrow{K} \cdot \overrightarrow{v} \simeq K_{\perp} v_{\perp}$$

fluctuation velocity:

 $v_{\perp} = v_{E \times B} + v_{\rm ph}$

Measured quantities.

- 1) Tilt angle $heta_{ ext{tilt}}$ selects k .
- 2) For small $\delta n/n$, received power vs θ_{tilt} gives k spectrum.
- 3) Can measure mean flow and perturbations. If $v_{ExB} \gg v_{ph}$, then $\Delta \omega$ gives v_{ExB} or E_r . If $v_{ExB} \sim 0$, $\Delta \omega$ gives v_{ph} .

Doppler Reflectometry Used Extensively on ASDEX

NSTX 5 Year Planning Mini-Workshop, February 27, 2007

Work is Already Under Way at DIII-D/PPPL

Fast Radial-View Polarimetry Principles

Faraday Rotation Angle

$$\Psi = 2.62 \times 10^{-13} \lambda^2 \int n(z) \vec{B(z)} \cdot \vec{dl} = c_F \int B_{\parallel} n(z) dz$$

Fluctuating Component

$$\tilde{\Psi} = c_F \int \left[\tilde{B}_{\parallel}(z) n_0(z) dz + B_{\parallel 0} \tilde{n}(z) \right] dz$$

Equilibrium Component

$$\Psi_0 = c_F \int B_{\parallel 0}(z) n_0(z) dz$$

On-Axis Current

$$J_z(0) = \left(\frac{d\Psi}{dx}\right) \frac{2}{c_F \mu_0} \frac{1}{\int n_e f(r,\alpha) dz}$$

Chord-Averaged B_r On-Axis

$$\tilde{\Psi}(z=0) \propto \int \tilde{B}_r(z) n_0(z) dz$$

NSTX 5 Year Planning Mini-Workshop, February 27, 2007

Possible Implementation on NSTX

Arrangement for Generating Two Orthogonally Polarized, Frequency Offset Beams

 ω_1

Optical Arrangement for Polarimetry on NSTX

- Initially, 3 chords straddling magnetic ٠ axis. Vertical dimension: 3 inches.
- Fast (3 MHz) chord-averaged $\delta n/n$ ٠ and $\delta B_r/B$, J_0 , δJ_0 .
- Resolution: ~0.01%
- Similar systems already exist on MST, ٠ DIII-D, HSX, Pegasus.

NSTX 5 Year Planning Mini-Workshop, February 27, 2007

HHFW Measurements Using Correlation Reflectometry

- Reflectometry for HHFW measurements.
 - $\delta n/n$ based on technique used by J.H. Lee et al. on DIII-D. Radial profile of $\delta n/n$ (local measurement).
 - Radial correlation reflectometry for k_r measurements.
- Simultaneously measure fluctuations from DC to 50 MHz. Observe processes such as mode conversion, turbulence scattering. Simultanous measurement of local turbulence.
- Heterodyne technique for correlation reflectometer necessary. Use of SSBM is begin investigated. Successfully used on TORE-Supra.
- Single-channel fixed-frequency system already exists! Will be tested this year. (Feasibility of technique can be assessed this year).

