Fast-ion D_{α} (FIDA) Measurements of Fast-ion Transport by Low-Frequency MHD

W. Heidbrink, R. Bell, Y. Luo^{*}, E. Ruskov, W. Solomon, K. Burrell^{*}, D. Liu

*(DIII-D only)

- DIII-D examples
- NSTX hardware plans

Fast-ion D_{α} (FIDA) Diagnostic Measures Light from Reneutralized Fast Ions

• A type of Charge Exchange Recombination Spectroscopy

•Use vertical view to avoid bright interferences

• Exploit large Doppler shift (measure wings of line)

 Background subtraction usually dominates uncertainty

- •Achieved resolution: ~ 5 cm,
- ~ 10 keV, 1 ms.

Heidbrink, PPCF 46 (2004) 1855; Luo, RSI (2007) in press.

FIDA Spatial Profile Measures Redistribution

 Volume-averaged neutron rate is below the classical TRANSP prediction during the strong Alfven activity

• During the strong Alfven activity, the fast-ion profile is nearly flat

•Recent Hybrid Work: Look for redistribution as $q_0 \rightarrow 1$

*Heidbrink, IAEA (2006); to be submitted to PRL

Fast-ion Transport Broadens the Profile of Neutral-Beam Driven Current

The current diffuses more slowly than classically predicted

- Independent determinations of q_{min} from MSE-based equilibrium reconstructions and from the RSAE integer q crossings agree
- Effect not seen in lower-power shot with weak Alfven activity
- Apparently co-circulating fast ions that move to $\rho \sim 0.5$ broaden the NBCD profile.*

*Wong, PRL 93 (2004) 085002; Wong, NF 45 (2005) 30.

Changes in spectral shape can indicate spatial transport

- Model shape is the average of several spectra with quiet plasmas.
- In quiet plasmas, the spectral shaped is remarkably consistent
- The ICH case: high energy fast ions are accelerated.
- The AE case: Fast ions from the core region (that pitch-angle scatter more) are expelled.

Velocity distribution is usually determined by Coulomb collisions, but can be altered by spatial transport

NSTX Instruments: Bandpass for Time, Spectrometer for Energy/Space

- •Bandpass system integrates over wavelength--optimized for temporal resolution (< ms)--for bursting MHD
- Simulation code adapted; NPA module added; accommodate ORBIT output
- Install Bandpass hardware in March
- Postdoc (Mario Podesta) starts in May
- Spectrometer measures full spectra across profile (10 ms)
- Spectrometer operational at end of 2008 campaign?

Heidbrink, RSI 77 (2006) 10F120.

Different Fast-ion Diagnostics Weight Phase Space Differently

FIDA: $\lambda \rightarrow V_z \rightarrow$ Perpendicular energy

- •A curve in (E,pitch) space contributes to a particular λ
- Higher energies also contribute but more weakly
- Atomic cross sections also influence weighting
- •NPA measures a "point" in velocity space

Complementarity of Fast-ion Diagnostics

Diagnostic	Velocity Space	Configuration Space
Neutrons	High-energy weighting	Volume-average
Pressure	Energy weighting	~ 5 cm
FIDA	vzcomponent	5 cm x 30 cm
Neutrals	Point	Beam footprint
Loss	Narrow in pitch	Orbit average

Averages are useful for bulk effects on plasma; Local phase-space measurements isolate physics.