

Macroscopic Stability (MHD) Physics in NSTX

College W&M Colorado Sch Mines Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL **PPPL** PSI Princeton U **SNL** Think Tank, Inc. UC Davis **UC** Irvine **UCLA** UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

Steven A. Sabbagh Columbia University For the NSTX Research Team

DOE Mid-Term Review of Major MFE Facilities September 21st, 2006

Gaithersburg, MD

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

NSTX is conducting world-leading MHD physics research addressing critical fusion program issues

Great progress

- Key research topics
- Milestones reached ahead of schedule
- High-level publications and invited talks
- Flexible research plan has <u>adapted</u> to program needs
 - Addressing relevant physics for ITER, CTF, KSTAR

NSTX / ITER RWM control

<u>Advantage</u>: low aspect ratio, high β provides high leverage to uncover key tokamak physics (e.g. RWM control, rotation damping, high elongation)

MHD Research Ahead of Schedule, now Addressing Advanced Goals (Timeline from 5 Yr Plan) **FY02** 03 04 05 06 07 08 09 Optimize stability with active tools Optimize passive stability **IPPA: 5 year** Stablility vs. shape, P(r), I Stablility vs. J(r), P(r), shape Error fields, rotation damping physics **RWM/wall interaction RWM & EF active control, rotation control** Include v₄ in reconstruction Effects of v_{\downarrow} shear on β limits **NTM suppression** Characterize NTM, island widths Assess CD required - NTM stabilization TAE & CAE similarity expts. Comparison to theory Gap structure vs. A, g profile Measure ELM structure ELM type vs. shape, regime Compare ELM data to theory Moved to Boundary Major Accomplishments Moved to Wave-Particle RWM active stabilization at low rotation (ITER-relevant) (Sabbagh, PRL 97 (2006) 045004) Observed plasma rotation damping by NTV physics (Zhu, PRL 96 (2006) 225002) Unstable n = 1 – 3 RWM observed (Sabbagh, NF 46 (2006) 635) RWM critical rotation speed depends on V_{ϕ} profile, q; A (Sontag, PoP **12** (2005) 056112) (Reimerdes, PoP **13** (2006) 056107) \square Rotation + ω^* effects may provide 1/1 mode saturation (Menard, NF 45 (2005) 539) Stability vs. shape, P(r), I_i studied (Gates, PoP **13** (2006) 056122) (Sabbagh, NF **44** (2004) 560; Menard, PoP 11 (2004) 639)

 V_{ϕ} , flux-isotherm, MSE in equilibrium reconstructions

(Sabbagh, NF 46 (2006) 635)

Extreme elongation at low I_i opens possibility of higher β_P , f_{BS} operation at high β_T

Sustained κ ≥ 2.8 (reached κ = 3) for many τ_{WALL} using rtEFIT isoflux control
Allowed by divertor coil upgrade in 2005, <u>no</u> in-vessel vertical position control coils
Stability analysis of new operational regime under investigation 2¹/₁

 $\hfill\square$ High κ research important for CTF design studies

Kink stabilization by wall and RWM passive stabilization by rotation allows sustained plasma operation at maximum β

Strong inverse dependence of β_N vs. pressure peaking factor*
Time-evolved DCON analysis performed between shots on request
NSTX

Unstable RWM with n = 1 - 3 observed

- First such identification in a tokamak device
- Toroidal mode number n > 1 theoretically less stable at low A
 - n > 1 physics important for advanced tokamak operation
- Unstable RWM dynamics follow theory

(Fitzpatrick, Phys. Plasmas 9 (2002) 3459)

- measurable mode rotation can occur during growth
- growth rate, rotation frequency ~ $1/\tau_{wall}$

< edge Ω_{ϕ} > 1 kHz

RWM phase velocity follows plasma flow

(Sabbagh, et al., NF 46 (2006) 635.)

RWM active control system, rotation control installed

RWM stabilized at ITER-relevant rotation for ~ 90/yRWM

(Sabbagh, et al., PRL **97** (2006) 045004.)

Rotation reduced far below RWM critical rotation profile

Rotation typically fast and sufficient for RWM passive stabilization

□ Reached $\omega_{\phi}/\omega_{A} = 0.48|_{axis}$

 Non-resonant n = 3 magnetic braking used to slow entire profile

The
$$\omega_A/\Omega_{crit} = 0.2|_{q=2}$$

• The $\omega_A / \Omega_{crit} = 0.3 |_{axis}$

- Rotation less than ½ of ITER predicted $\omega_{\phi}/\Omega_{crit}$ (Liu, et al., NF 45 (2005) 1131.)
- Rotation profile responsible for passive stabilization, not just single radial location*

(Sabbagh, et al., PRL **97** (2006) 045004.) *(Sontag, et al., PoP **12** (2005) 056112.)

Observed plasma rotation braking follows NTV theory

- First quantitative agreement using full neoclassical toroidal viscosity theory (NTV)
 - Due to plasma flow through non-axisymmetric field
 - Trapped particle effects, 3-D field spectrum important
- Pressure-driven resonant field amplification (RFA) increases damping at high beta
 - Included in calculations
 - Based on applied field, or DCON computed mode spectrum
- Viable physics for simulations of plasma rotation in future devices (ITER, CTF, KSTAR)

(Zhu, et al., PRL **96** (2006) 225002.) Columbia U. thesis dissertation

<u>Combination of rotation and two-fluid effects may</u> explain experimentally observed saturated 1/1 mode

Saturation with hot spot pulled away from x-point

Co-injection w/ 2-fluid M₄=+0.3

Mode crashes faster than single-fluid MHD

Counter injection w/ 2-fluid

Ma=-0.3

- Sawtooth stabilization physics critical for ITER
- $\hfill\square$ Rotational and kinetic stabilization effects are amplified at high β and M_A

Sustained high rotational shear can cause 1/1 saturation in simulations, but shear is greatly reduced by NTV in experiments

(Menard, et al., NF 45 (2005) 539.)

Program adaptation to support ITPA / ITER locked mode threshold and disruption studies

CMOD

100

(2) Disruption studies

NSTX contributing low-A, low B data

- density scaling nearly linear, similar to higher-A
- Will contribute B, q scaling data for ITER size scaling

NSTX data contributes dependence of current quench time, τ_{CO} on A

- Important test of theory for ITER, CTF
- τ_{CO} independent of plasma current density when A dependence of plasma inductance is included

Low A, high β favorable for NTM seeding / stabilization study

- NTM seeding from large sawteeth could greatly reduce ITER β-limit
- Several modes (e.g. sawteeth*, RWMs**) seed other MHD modes
 - Large q = 1 radius, high β, mode coupling at low-A makes seeding process easier
 - □ NTM stabilization effects amplified at low-A (GGJ $\propto \epsilon^{3/2}$) NTM less deleterious
- Adaptation: Priority given to study most deleterious modes in 2004 2006
 - NTM study planned 2007 2008
 - Exploit 12 channel MSE, reflectometer, fast multi-filter USXR capabilities
 - 2007 2008 plans for NTM suppression by EBW subsequently delayed

*Fredrickson, et al., Bull. Am. Phys. Soc. 2004 **Sabbagh, et al., NF **44** (2004) 560.

Sawtooth excitation of n = 2

Sawtooth excites n = 2, but n = 2 can decrease post-crash

Significant progress in MHD research, ahead of program milestones

Advanced progress in research

- Stability space vs. I_i , F_p , κ established; record κ beyond 5 year plan
- Extensive RWM physics research, yielding novel observations and theory/experimental comparisons
- RWM active stabilization demonstrated at low rotation (ITER-relevant)
- First full NTV calculation, quantitative agreement with experiment
- 1/1 mode saturation may be explained by rotation + two-fluid effects

Adaptation to technical/program changes

- Machine modified to study high elongation for CTF and beyond
- Precise, non-resonant plasma rotation control for ITER relevance
- Contribution to ITPA locked mode threshold scaling and disruption I_p quench-rate studies, supports ITER, CTF
- Performed RWM joint experiment with DIII-D, JET supports ITPA (Reimerdes, PoP 13 (2006) 056107.)

Future plans (2007 – 2008) for MHD research build upon present results

- Investigation of extreme elongation regime for CTF, stability studies with greater detail of J(r) from expanded MSE
- RWM / DEFC research targeting active stabilization needs for USBPO, ITER, CTF, KSTAR
- RWM research program leveraging joint experiments (ITPA) for needed physics understanding of kink/RWM stabilization
- Further attention to ITPA / ITER disruption needs (e.g. B, q scaling of locked mode threshold, thermal quench and halo current peaking studies)
- Characterization of NTM at low A, high β and assessment of current drive needs for stabilization

<u>Reference Slides Follow</u> (Not part of main presentation)

Theoretical RWM reconstructed from experimental data

Before RWM activity

(exterior view)

(interior view)

Visible light emission, USXR is toroidally asymmetric during RWM

DCON theory + data reconstructs mode

- uses experimental equilibrium reconstruction
- □ includes n = 1 3 mode spectrum
- uses relative amplitude / phase of n spectrum measured by RWM sensors

