

NSTX Integrated Scenario Research Plans for 2009-2013

Colorado Sch Mines Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

College W&M

Jonathan Menard For the NSTX Research Team

National Tokamak Planning Workshop MIT, Cambridge, Massachusetts

September 17-19, 2007

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U NIES Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

NSTX has made substantial progress in developing and understanding high performance plasmas w/ high non-inductive current fraction

- Routine operation near ideal-wall stability limit $\beta_N \le 6$
 - − Plasma quiescent until q evolves toward $q_{MIN} \le 1.2 \rightarrow \text{core MHD}$
- H-mode with H_{98y2} > 1 at high β_N

- Utilized novel low-B_T MSE diagnostic to validate current drive sources
 - Core MHD can redistribute fast ions
- Non-inductive CD fraction up to 65% f_{BS} =55%, f_{NBICD} = 10% with β_N near 6

VSTX

NSTX 5 year integration goal is to meet or exceed key dimensionless performance parameters of NHTX and ST-CTF

(D) NSTX

NSTX full-NI target		NHTX	ST-CTF				
Α	1.5	1.8	1.5				
H_{98v2}	1.1-1.4	1.3	1.3				
ĸ	2.6	2.8	3.0				
q *	5.3	3.8-4.5	3.3-4.2				
β _T	14%	12-16%	16-25%				
β _N [%-mT/MA]	6.2	4.5-5	4-5				
f _{BS}	0.7-0.8	0.65-0.75	0.45-0.55				
f _{GW}	0.7-1.0	0.4-0.5	0.3-0.5				
Dimensional parameters:							
I _P [MA]	0.75	3-3.5	8-10				
B _T [T]	0.55	2.0	2.5				
R ₀ [m]	0.86	1.0	1.2				
a [m]	0.58	0.55	0.8				
I _P /aB _{τ0} [MA/mT]	2.3	2.7-3.2	4-5				

<u>5 year goal</u>: Achieve full NICD at high β and confinement while advancing startup/ramp-up research for NHTX/ST-CTF/DEMO

- Full non-inductive current drive strategy and method:
 - 1. Increase BS current \leftrightarrow higher β_{P-th} thru higher P_{HEAT} and/or H-factor 2. Increase NBICD and P_{HEAT} , achieve J profile control $\leftrightarrow 2^{nd}$ NBI source
 - 3. Control and improve confinement and stability \leftrightarrow J profile control
 - 4. f_{GW} < 1 & β_N ~ 6, n_e & J equilibration \leftrightarrow high B_T=5.5kG w/ longer flat-top
 - 5. Control n_e , increase confinement \leftrightarrow liquid lithium divertor (LLD)
 - 6. Sustain τ_E , β_N by suppressing ELM, RWM, EF \leftrightarrow off-midplane 3D coils
- Plasma formation and ramp-up strategy and method:
 - 1. Increase Coaxial Helicity Injection (CHI) $I_P \leftrightarrow$ higher pre-ionization, V_{CHI}
 - 2. Optimize non-CHI start-up \leftrightarrow PF-only w/ PI and heating, plasma guns
 - 3. Increase early pre-ionization/heating power \leftrightarrow 350kW ECH/EBW system
 - 4. Extend long-pulse plasmas ↔ use CHI/PF/Gun for ohmic flux savings
 - 5. Ramp-up I_P to full-NI target \leftrightarrow high- I_P start-up for FW & NBI heating/CD

Addition of 2nd NBI source with increased tangency radius of injection offers several potential advantages

- Higher P_{HEAT} for higher β_P, f_{BS} at presently sustainable H_{98y2} ≤ 1.2
- Increased NBICD from higher P_{NBI}
 And higher CD efficiency of large R_{TAN}
- Increased control of q profile
 - Optimize $q(\rho)$ for high τ_E , β , f_{NI}
- Increased research flexibility by varying:
 - q-shear for transport & MHD physics
 - Heating, torque, rotation profiles
 - $-\beta$ at higher I_P and B_T
 - Fast-ion distribution and instabilities
 - Divertor P/R and pulse-length

NBI upgrade operational mid-FY10

Increased R_{TAN} NBI provides 50% higher CD efficiency and much more control over NBICD $J_{||}$ profile than present NBI

Small R_{TAN} NBI provides little variation in NBI J_{||} profile shape
Large R_{TAN} can vary NBI J_{||}(0) by a factor of 8 → peaked to hollow J_{||}

2^{nd} NBI would enable control of core q and χ profiles in fully non-inductively-driven scenarios using only NBI + bootstrap

- Combination of available sources can control q_{MIN} and core q-shear
 - At H_{98y2} =1.2, J control with q_{MIN} > 1.2 requires operation with f_{GW} > 0.9
- 3.0 Use 4 of 6 sources 2.5 E_{NBI} =90keV, $P_{IN,I}$ =8MW f_{GW}=0.95 q profile 2.0 1.5 R_{TAN} [cm] 50, 60, 70, 130 1.0 60, 70,120,130 70,110,120,130 0.5 0.0 0.2 0.4 0.8 0.6 1.0 ρροι $I_{P} = 725 kA, B_{T} = 0.55T, \beta_{N} = 6.2, \beta_{T} = 14\%$ $H_{98y2} = 1.2, f_{NICD} = 100\%, f_{\nabla D} = 73\%$
- Magnetic shear control could be important tool for controlling core confinement and MHD stability
 - Core transport reduced in RS L-mode

Real-time MSE, CHERS available mid-FY10

Parameter scans confirm higher $P_{NBI} \& B_T$ aid achievement of full non-inductive current drive using only NBI + bootstrap

• P_{NBI} =8-10MW needed for full NICD if H_{98v2} =1.1-1.2 and $q_{MIN} \ge 1.2$

High β_P expt. at 0.52T		H _{98y2} scan at 0.55T			B _T =0.45T
P _{INJ} [MW]	5.8	6.0	8.0	10.0	8.0
f _{NICD}	0.65	1.0	1.0	1.0	1.0
H_{98v2}	1.2	1.4	1.2	1.1	1.1
q _{MIN}	1.3	1.5	1.35	1.25	1.2
β _N	5.7	6.1	6.2	6.3	6.6
f _{GW}	1.0	0.84	0.96	0.94	1.07
I _P [kA]	720	720	725	740	585
β _T	13.4	14.2	14.0	14.7	15.0
β	1.7	2.3	2.3	2.3	2.6
f _{BS}	0.54	0.77	0.73	0.69	0.74
f _{NBICD}	0.11	0.23	0.27	0.31	0.26

- High B_T=0.55T operation is favorable for: -
 - Lower $\beta_N \rightarrow$ closer to β_N =6 achieved experimentally
 - Reduced $f_{GW} \rightarrow$ below 1
 - Higher I_P (prompt loss increases rapidly for $I_P < 600$ kA)

(OD NSTX

Long-pulse integrated scenarios benefit from extended TF and OH coil operation at full B_T , and require <u>sustained</u> density control

- Sub-cooled OH and TF (-50°C-100°C) provide 2.5s flat-top at B_T=0.55T
 - Longer flat-top needed to reach density equilibration & J relaxation at higher $\rm T_e$
 - $-B_{T} = 0.52-0.55T$ aids 700-750kA full-NI
 - Long-pulse OH \rightarrow I_P=1MA for 2.5s
 - Use increased NBICD of 2nd NBI source

Seal off upper & lower Umbrella volumes and

pressurize w/dry N₂

- Liquid Lithium Divertor for D pumping
 - Designed to reduce density 25-50% depending on triangularity
 - Consistent with f_{GW} > 0.8 needed for fully-NI target scenarios
- Long-pulse pumping and core fueling required for sustained density control

Liquid

Lithium

Divertor

Initial LLD operational FY09

Pumping upgrade in FY10

Implement core fueling FY10-12

NSTX could provide unique contributions to ELM suppression physics understanding for future ST and AT NCT and reactors

- For ST interplay between ELM control and $\beta_N > \beta_{N-no-wall}$ (islands, flow damping)
- For ST/AT 12 coils toroidally → high-n (n=6), mixed intermediate-n (n=3+n=4)

NSTX will continue to advance the integration of plasma start-up, ramp-up, and sustainment needed for ST-CTF and reactors

In ST-CTF/DEMO, iron core could provide portion of flux needed for I_P ramp-up NSTX FY2009-13 - Use OH to simulate iron core as needed to achieve I_P ramp-up

Coaxial Helicity Injection (CHI) is most successful non-solenoidal plasma start-up technique implemented thus far on NSTX

PF-only startup challenge: coils providing V_{LOOP} must also provide radial force balance \rightarrow must control η vs. time

• 20kA achieved w/ large-area field null

8ms

9ms

10ms

• HHFW couples until plasma moves inward

114405

- More heating needed for lower $\eta \rightarrow$ ECH/EBW
 - Scenarios with large stored flux and small area field-null tested
 - No plasma-current measured
 - More pre-ionization power needed → ECH

2009-10: Increase I_P of PF-only scenarios with w/ 350kW ECH/EBW
2009-11: Quantify achievable I_P vs. null quality and ECH power
2011-12: Couple highest I_P PF-only scenario to HHFW, NBI
2012-13: Use PF + other startup/ramp-up to produce high-β discharge
2009-13: Utilize TSC simulations to optimize ramp-up evolution

Plasma-gun startup techniques from PEGASUS could be tested on NSTX to complement/enhance CHI/PF-only startup research

- Plasma guns in divertor produced $I_P=30kA$
- Successfully coupled to OH induction

VSTX

• Outboard mid-plane gun being developed

Plasma Gun	2008: System design for NSTX		
Startup Plan for	 2009: Installation on NSTX and commissioning tests 2009-2011: Support outer PF start-up experiments 		
2009-13	 2010-2011: Test plasma startup using mid-plane gun 2011-2013: Upgrade system to higher current levels as warranted 		

Filaments

Upgraded HHFW will assist high performance NBI-heated H-mode scenarios and improve I_P ramp-up NSTX • 2007: Higher $B_T = 0.55 \text{kG}$ and k_{\parallel} • HHFW heating at low I_P can induce reduce parasitic surface waves high- β_P H-mode w/ V_{SURF}, V_{LOOP} \rightarrow 0 \rightarrow Significant e-heating in presence - Broad $T_{e}(\rho)$ best for non-OH ramp-up of NBI for first time in L-mode Te(R), keV • Plan: extend to $B_T=5.5$ kG H-mode 1.5 β_P=1.8 f_{BS}≤80% ⋅ T_e(0) - Example: early HHFW can elevate q 1.0 TSC modeling 116313 like discharge

 $\mathsf{T}_{\mathsf{ped}}$ 0.5 broader j_{NB}, higher τ_E , $\kappa = 2.6$, $n_{20}(0) = 0.75$ early HHFW, broader j_{NB} , higher τ_E , $\kappa = 2.6$, $n_{20}(0) = 0.75$ 0.0 q(0) 120 40 80 160 3 n(R), /m3 x10^19 **1MW HHFW** t = 0.385sheating 2 0.400s 3 0.425s 0.485s 1 2 0s 0.5s 80 120 40 160 Double-feed antenna for higher P_{RF} , V_{RF} in FY09 R [cm] Improved matching for ELM-resilience mid-FY10

Sustainment and Start-up/Ramp-up Research Timeline

