

NSTX Waves and Energetic Particles Research Plan for 2009-2013

College W&M
Colorado Sch Mines
Columbia U
Comp-X

General Atomics INEL

Johns Hopkins U

LANL LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL PPPL

PSI

Princeton U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

UCSD

U Colorado

U Maryland

U Rochester
U Washington

U Wisconsin

Gary Taylor

Gary Taylor
For the NSTX Research Team

National Tokamak Planning Workshop MIT, Cambridge, Massachusetts

September 18, 2007

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst RRC Kurchatov Inst TRINITI **KBSI KAIST** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U Quebec**

NSTX Parameters Important for Studying Wave-Particle Interactions Relevant to Burning Plasma and ST-CTF

- High Harmonic Fast Wave (HHFW) system is studying surface wave & edge parametric decay physics relevant to ITER ICRF:
 - Recent HHFW experiments show improved coupling; results support several proposed upgrades to existing antenna design
- HHFW & Electron Bernstein Wave (EBW) heating & current drive (CD) can assist non-inductive ST-CTF plasma startup & sustainment:
 - 28 GHz heating system being installed on NSTX to test EBW coupling, heating and CD at up to 1 MW of RF power by 2013
- NSTX NBI ions resonate strongly with Alfvén modes, providing test bed for studying reactor-relevant energetic particle (EP) physics:
 - Discovery of CAE/GAE modes, multi-mode transport & new understanding of chirping modes are helping to advance theory
 - Install 1 MW CAE stochastic ion heating system

Long-Term HHFW Research Objective: Assist Non-Inductive ST-CTF Startup & Sustain Reactor-Grade H-Mode

- ITER ICRF will operate at high RF power with large antenna-plasma gap, a scenario where even low levels of RF edge losses could be detrimental
- NSTX HHFW parameters provide an opportunity to quantify RF edge power loss mechanisms:
 - → Core heating efficiency shows strong dependence on launched wavelength
 - consistent with enhanced surface loss
 ^{AW}_(kJ)
 when edge densities exceed density
 for onset of perpendicular wave propagation
 - perpendicular propagation begins at ~ 20°
 to B field, even in ITER

→ Other loss mechanisms, such as Parametric Decay Instability (PDI), RF sheaths, will be studied with RF probes and other edge diagnostics

Substantially Improved HHFW Coupling by Keeping Density Near Antenna Below Level Needed to Generate Surface Waves

- Improved HHFW coupling for CD phasing obtained by lowering edge density
- Significant core electron heating now obtained in L-mode for CD phasing during NBI at B_t(0) = 5.5 kG

HHFW Antenna Upgrades Provide More Power to be Coupled Per Strap into H-mode and Provides Space for EBW Launcher

Feed

(2009)

- Reduce HHFW antenna from 12 to 8 straps (2009)
- Add 3dB hybrid coupler for increased resilience to ELMs during H-mode (2010-11)
- Improved diagnostics to monitor arcing, plasma-antenna interaction and PDI (2008-10)
- Upgrade high-k scattering and FIReTIP for direct observation of RF wave structure in the core (2008)
- Leave two disconnected HHFW straps for CAE coupling

Disconnected HHFW Straps Used for CAE Coupling

2008-13 HHFW Research Plan

2008:

- Extend previous helium plasma coupling physics studies to deuterium plasma; improve operation with NBI, and optimize heating efficiency
- Begin heating & CD studies in deuterium H-mode plasmas

2009-10:

- Optimize heating and CD operation with NBI with upgraded antenna
 - Larger plasma-antenna gap permitted with more stability and power (more antenna voltage standoff and greater power for same antenna voltage)
- Begin HHFW coupling optimization into plasma startup/ramp-up

2011:

 Test HHFW coupling during ELMs using 3dB hybrid coupler to further optimize H-mode heating and CD operation

2012-13:

 Combine HHFW and ECH/EBW to provide fully non-inductive plasma startup and ramp-up

Long Term EBW Research Objective: Assess Ability of EBWCD to Generate Off-axis Stabilizing Current in ST-CTF

- JSOLVE modeling for steady state TSC simulation shows that adding 1 MA of off-axis EBWCD to ST-CTF plasma with wall loading of 1 MW/m² can decrease I_i from 0.5 to 0.25 & increase q_o from ~ 2 to ~ 4
- EBWH and/or ECH can also assist solenoid-free ST plasma startup

Y-K. M. Peng, et al., Plasma Phys. Control. Fusion, 47 B263 (2005)

80% EBW to O-Mode (B-X-O) Coupling Measured Via Thermal Emission from Axis of NSTX L-Mode

- Experimental results consistent with modeling
- Recent measurements show
 50% EBW coupling during
 H-mode
- Evidence for 50-60% EBW coupling during O-X-B heating on MAST and TCV during H-mode
- B-X-O coupling experiments in 2008, using thermal EBW emission, will seek H-mode regimes with > 80% coupling

NSTX

Modeling Predicts Localized Core Heating and \sim 40 kA/MW for On-Axis 28 GHz EBWCD in NSTX β = 20% Plasma

- Off-axis (ρ ~ 0.6) Ohkawa CD possible with similar CD efficiencies at higher T_e and lower n_e
- MSE can measure this level of CD, especially by using RF modulation

2008-13 EBW Research Plan

2008:

- Continue coupling studies with EBW emission radiometers
 2009:
- 350 kW 28 GHz gyrotron system operational
- ECH-assisted startup using fixed horn launcher:
- Heat CHI & PF-only startup plasma to ~ 300 eV for HHFW coupling
 2010:
- Install second 350 kW 28 GHz gyrotron & locally-steered O-X-B launcher next to HHFW antenna
- Coupling studies & core heating:
 - Edge reflectometer at EBW launcher to measure local L_n
 - Lower hybrid antenna probe to measure PDI

<u>2011:</u>

- Upgrade to remotely-steered O-X-B launcher
- 700 kW core & off-axis heating studies (benchmark deposition codes)

2012-13:

- Install third 350 kW 28 GHz gyrotron
- 1 MW heating & EBWCD (benchmark Fokker-Planck codes)

Long-Term EP Research Objective: Develop Ability to Predict EP Transport for ST and Tokamak Reactors

- Capability to simulate EP transport by non-linear energetic particle driven modes required for future devices (ST-CTF, NHTX, ITER...):
 - affects heating profiles, ignition thresholds and efficiency
 - affects beam driven current profiles (ST-CTF, NHTX)
- Transport in small ρ^* devices will be through interaction of multiple modes and/or by global EP modes
- NSTX will study physics of EP instability-driven fast ion transport and confinement for:
 - TAE avalanches
 - Energetic Particle Modes (EPMs) with q(0)>1
- Measure EP mode structures, EP distributions and redistribution to benchmark codes and guide development of simulations

Fast Ion Loss on ITER Expected from Multiple Nonlinearly Interacting Modes, Studied on NSTX

- Strong drops in neutron rate correlate with avalanche events
- Avalanches typically involve strong frequency chirping that may also be important for fast ion transport
- Goal is to develop ability to predict fast ion redistribution by multi-mode interactions

12

2008-13 Energetic Particle Research Plan

2008:

- Studies of EPMs/TAE avalanches with extended reflectometer array
- Installation and check-out of FIDA

2009:

- Extensive documentation of fast ion redistribution with FIDA, NPA,
 FLIP and multi-channel reflectometers for TAE avalanches and fishbones
- Develop beatwave capability for TAE range of frequencies (in lieu of dedicated antenna for *AE spectroscopy)
- Extend polarization and toroidal Mirnov coil arrays
- Passive observation of CAE/GAE using HHFW antenna strap
- Use high-k scattering to document continuum damping

2008-13 Energetic Particle Research Plan (cont.)

14

2010:

- Extend beatwave capability to CAE/GAE range of frequencies measure mode damping rates
- Faster "scanning" reflectometer to measure TAE mode structure
- Use low power, low frequency amplifier to excite TAE/CAE using HHFW antenna strap

2011:

- Control mode chirping with HHFW
- Study ITER-relevant multi-mode (fishbones, TAE, CAE, ...) driven energetic particle effects
- Determine stochastic ion heating thresholds
- Measure HHFW antenna strap loading at TAE/CAE frequencies

2008-13 Energetic Particle Research Plan (cont.)

2012-13:

- Add high power, low frequency source to excite CAE to stochastic heating threshold using new dedicated, multi-turn, antenna
- Continue studying multi-mode interactions with energetic particles
- Explore effects of fast ion distributions on mode stability with 2nd off-axis neutral beam.

CAE Stochastic Heating Antenna

Timeline for 2009-13 NSTX Plan for Waves and Energetic Particles Research

