Spontaneous Rotation and Momentum Transport in OH and RF H-modes

C.E. Bush, *et al. Oak Ridge National Laboratory*

Transport and Turbulence 5-Year-Planning Workshop Monday, February 19, 2007 Princeton Plasma Physics Laboratory Princeton, NJ

The Proposal is Composed of:

- Ohmic H-modes, RF H-modes, NBI H-modes, Counter Injection, Diagnostics
- Unique Physics from OHmic H-mode
 - a) Reduction of correlation length (by > 4x)
 - 1. But need definitive experimental data
 - b) Need reflectometer core n_e fluctuation data
 - 1. Are fluctuations reduced in core by h-mode barrier?
 - Is turbulence trapped in core when H-mode barrier is triggered?
 - NSTX can provide aspect ratio scaling of spontaneous velocity (for ITPA database)
- Beam blips for momentum transport experiments in quiescent OHmic and RF Hmodes

Correlation Length Decreases at L-H Transition

Time series of cross-correlation values near L-H transition. 0.25 F Σ 0.1 orlpho 0.10 0.D5 0.00 1.01 0.8 xcorl **O_B** 0.4 0.2 0.0 0.17 D.18 0.19 0.20 0.21 0.22 Time [s]

- Typical L_{cr} drops from ~10-20 cm to ~ 4-8 cm at the L-H transition.
- Eventual rise in edge density cuts off reflectometer signal
- For the 42 GHz channel, statistical properties of signal (amplitude histogram, complex spectrum) remain constant across transition, with turbulence properties close to axis changing little

The Proposal is Composed of:

- Ohmic H-modes, RF H-modes, NBI H-modes, Counter Injection, Diagnostics
- Unique Physics from OHmic H-mode
 - a) Reduction of correlation length (by > 4x)
 - 1. But need definitive experimental data
 - b) Need reflectometer core n_e fluctuation data
 - 1. Are fluctuations reduced in core by h-mode barrier?
 - 2. Is turbulence trapped in core when H-mode barrier is triggered?
 - c) NSTX can provide aspect ratio scaling of spontaneous velocity (for ITPA database)
- Beam blips for momentum transport experiments in quiescent OHmic and RF H-modes

Ion Internal Transport Barrier Develops with NBI into Ohmic H-mode Target

(continued)

- New diagnostics and diagnostics upgrades
 - a) Use new features of microwave reflectometer
 - 1. Simultaneous measure of edge and core fluctuations and turbulence
 - 2. Measure V_{θ}
 - b) New X-ray crystal system to measure T_e , T_i , V_θ (similar to Manfred's C-mod system)
 - 1. Are fluctuations reduced in core by h-mode barrier?
 - 2. Is turbulence trapped in core when H-mode barrier is triggered?
 - c) New edge rotation diagnostic with better spatial resolution
 - **1.** For better profiles of T_i , V_{θ} , $V_{\phi} ==> E_r$ and ExB shearing rate

Counter NBI

- a) Again momentum and spontaneous velocity in Ohmic and RF
- b) Pthreshold studies with counter injection
 - 1. With new and upgraded diagnostics as above

The Edge Rotation Diagnostic (ERD)

V_t(R) and V_p(R) change at L-H Transition

CEBush_NSTX_T&T_5Yr_Feb2007

(continued)

- New diagnostics and diagnostics upgrades
 - a) Use new features of microwave reflectometer
 - 1. Simultaneous measure of edge and core fluctuations and turbulence
 - 2. Measure V_{θ}
 - b) New X-ray crystal system to measure T_e , T_i , V_θ (similar to Manfred's C-mod system)
 - 1. Are fluctuations reduced in core by h-mode barrier?
 - 2. Is turbulence trapped in core when H-mode barrier is triggered?
 - c) New edge rotation diagnostic with better spatial resolution
 - **1.** For better profiles of T_i , V_{θ} , $V_{\phi} ==> E_r$ and ExB shearing rate
- Counter NBI
 - a) Again momentum and spontaneous velocity in Ohmic and RF
 - b) Pthreshold studies with counter injection
 - 1. With new and upgraded diagnostics as above

EXTRA

CEBush_NSTX_T&T_5Yr_Feb2007

ELM-Free OHH-mode Obtained with LSN

Model: E x B Flow Shear Breaks Turbulent Eddies to Transition to a Quiescent State

- Sheared ExB flow is expected to suppress turbulence leading to enhanced core confinement
- The ExB flow is determined from the zeroth order force balance equation for any species i:

$$E_{r} = \frac{1}{Z_{i}e} \left[\frac{T_{i}}{n_{i}} \frac{dn_{i}}{dr} + \frac{dT_{i}}{dr} \right] - V_{\theta}B_{\phi} + V_{\phi}B_{\theta}$$

- E_r can be solved for by using measured profiles of:
 - n_i, T_i, V_{ϕ} : using charge exchange recombination spectroscopy (CHERS) B_{θ} from MSE, combined with TRANSP simulations

Gas Puff Imaging (GPI): L-H transition

Turbulence/blob activity much lower During Ohmic H-mode than L-mode and NBI H-mode

- The characteristics of the H-mode turbulence and blobs present a continuum from a turbulence level just above that measurable (a "quiescent" H-mode) to that approaching L-mode level (an "active" Hmode), at least for brief periods of time.
- The level of activity correlates well with the pedestal n_e or P_e.

Electron (Ion) Heat Diffusivity, χ^e (χⁱ) Lower during OHH-mode with NBI Blip

C VI Emissivity and Toroidal Velocity Increase at Plasma Edge in Ohmic H-mode on NSTX

