

Multi-Scale Transport and Turbulence Physics in NSTX

College W&M Colorado Sch Mines Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Stanley M. Kaye For the NSTX Team

Mid Five-Year Plan Assessment Sept 21, 2006

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching ASCR. Czech Rep U Quebec

NSTX Addresses T&T Issues Critical to Both Basic Toroidal Confinement and Future Devices

- NSTX offers a unique view into plasma T&T properties
 - NSTX operates in a unique dimensionless parameter space: R/a, β_T, (ρ_{*}, ν_{*})
 - Dominant electron heating with NBI: relevant to α-heating in ITER

- Anomalous electron transport regimes: ions close to neoclassical
- Large range of β_{T} spanning e-s to e-m turbulence regimes
- Strong rotational shear that can influence transport
- Localized electron-scale turbulence measurable

Transport and Turbulence Five-Year Plan (as of 2003) Image: Strain of the str

Major accomplishments

- Key confinement and transport dependences established (B_T, I_p, β , ν^* ,...)
 - Data contributed to ITPA database to address high priority ITPA tasks
- Role of E_r and magnetic shear on transport identified
- Localized turbulence characteristics being assessed across wide range of k (ITG/TEM to ETG)
- Theory/simulations have indicated potential importance of ETG in controlling electron transport

SMK – T&T

World-Leading Diagnostic Capabilities Have Facilitated Rapid Progress in T&T Research

Rapid availability of profile data allows for:

- Equilibrium reconstruction between shots (EFIT) [Columbia Univ.]
- Stability analysis (DCON) [Columbia Univ., LANL]
- Transport analysis (TRANSP) within 20 min of data availability

Dedicated H-mode Confinement Scaling Experiments Have Revealed Some Surprises

NSTX Data Key to Addressing High-Priority ITPA Tasks

NSTX data used in conjunction with higher R/a data to establish ϵ (=a/R) scaling with more confidence

 β -scan at fixed ρ_e , ν_e

- β -dependence important to ITER advanced scenarios (B $\tau_{98v2} \sim \beta^{-0.9}$)
- Degradation of τ_E with β weak on NSTX

Local Transport Studies Reveal Sources of Confinement Trends

7

Pellet Perturbations Are Being Used to Probe Local Transport Properties and Critical Gradient Physics

Soft X-ray array diagnoses fast T_e changes in response to Li pellet injection

<u>H-mode with</u> <u>monotonic q-profile</u> exhibits stiff profile behavior

→ T_e close to marginal stability

T_e in <u>reversed magnetic</u> <u>shear L-mode</u> responds to pellet perturbation over several ms

Stutman et al., accepted in Phys. Plasmas (Oct. 2006)

Increased Magnetic and E_r Shear Are Associated with Reduced Transport

Core Momentum Diffusivities Track Neither Electron Nor Ion Thermal Diffusivities Exclusively

10

Tangential Scattering Diagnostic Measures Localized Electron-Scale Turbulence

- Wave fluctuation $\perp B$
 - k_r since probe beam, detectors on mid-plane
- Measurements will range from k_r=2 (ITG/TEM) to ~24 cm⁻¹ (ETG)

 $- \rho_e \sim .01 \text{ cm}$

- Large spatial scales due to low ${\rm B}_{\rm T}$
- Large mode amplitudes expected; δn/n~ 10⁻³
 - Detection limit due to noise; 2×10⁻⁵
- Large port access/tangential view
 - Radial resolution for $k_r > 4 \text{ cm}^{-1}$; 6 cm
 - Excellent k-resolution; $\Delta k \sim 1 \text{ cm}^{-1}$
 - Can vary location of scattering volume (near magnetic axis to near edge)

Fluctuations	
Correlation Reflectometry	Fixed (3), Swept, k_r up to 5 cm ⁻¹ k_{θ} up to 0.5 cm ⁻¹ (MHD to ion scale)
USXR	3 arrays, 600 kHz sampling for fast $T_e(r)$
1 mm Polarimetry	Upgrade of interferometer Low-k density, B fluctuations
Tangential Scattering	mm-wave, 280 GHz, $k_r \sim 2-20 \text{ cm}^{-1}$ (ion to electron-scale), localized measurement
Microwave Back- Scattering	High-k _e turbulence
Doppler Reflectometry	Localized poloidal velocity, zonal flows (low-k)

Turbulence Measurements and Gyrokinetic Calculations Have Helped Identify Possible Sources of Transport

Tangential scattering system measures reduced fluctuations (\tilde{n}/n) in both ITG/TEM and ETG ranges during H-mode

Ion and electron transport change going from L- to H-modes

Electron transport reduced, but remains anomalous

lon transport during H-phase at neoclassical level

0.5

r/a

High-k Scattering

Observation Volume

1.0

Theory/Gyrokinetic Calculations Indicate Both ITG/TEM and ETG are Possible Candidates for Electron Transport

GS2 calculations indicate lower linear growth rates at all wavenumbers during H-phase: *ETG unstable*

Theory/Gyrokinetic Calculations Suggest ETG May Also Play an Important Role in Determining Electron Transport at Low B_T

x/ρ_e

Summary and Plans

- Confinement and transport dependences
 - Confinement and transport trends found to differ from those at higher R/a
 - Dimensionless scans show no degradation of $B\tau_{\mathsf{E}}$ with β_{T}
 - Data provided to ITPA H-mode database for R/a and β_T scalings
 - Perturbative pellet experiments investigating critical gradient physics show stark differences between L- and H-modes possibly related to the q-profile
 - Understand the source of the difference in confinement trends at different R/a
 - Submit additional data to ITPA database (2006-2007)
 - Develop understanding of role of q(r), microinstability driving terms $[T_i/T_e, \eta_e, \eta_i,..]$ (2007-2008)
 - Complete similarity experiments with DIII-D, MAST to address the role of toroidicity on confinement through the R/a dependence (2007-2008)
- Role of rotation, E_r
 - Momentum transport decoupled from that of ions and electrons
 - Increased E_r shear associated with reduced transport
 - Establish momentum flux dependences and controlling physics (2007-2008)
 - Understand causal relation between E_r shear and reduced transport (2007-2008)
 - Magnetic braking with EF/RWM coils, poloidal/toroidal CHERS
 - Use flow shear to control transport (2007-2008)
 - Study zonal flows (2008-2009)

Summary and Plans (cont'd)

- Role of low- and high-k turbulence
 - Localized turbulence levels decrease going from L- to H-mode across k_r range from 2 to 24 cm⁻¹ (ITG/TEM to ETG) – associated with reduction in transport
 - Relate changes in turbulence to changes in transport over range of operating conditions (2007-2008)
 - Integrate measurements from different turbulence diagnostics for comprehensive picture across full wavenumber spectrum (2007-2009)
- Theoretical basis for transport and heating
 - Analytic theory and gyrokinetic calculations (linear and non-linear) have indicated the potential importance of ETG modes in governing electron transport
 - Test role of ITG, ETG, ... by varying driving & stabilization terms (2007-2009)
 - Relate measurements of thermal diffusivities, critical gradients to theoretical values to identify controlling microinstabilities (2007-2009)
 - Continue experiment/gyrokinetic theory comparisons over a range of transport regimes: linear and non-linear calculations (2007-2009)
 - Relate calculated turbulence fluxes to measured values (2007-2009)
 - Develop predictive capability (2008-2009)