

Low- and Intermediate-k Fluctuation Diagnostics

S. Kubota

NSTX 5 Year Planning Mini-Workshop February 15, 2007

NSTX 5 Year Planning Mini-Workshop, February 19, 2007

Ideas for Low- & Intermediate-k Measurements

Issures for Low- and Intermediate-k Fluctuations

- Turbulence:
 - If ITG/TEM linear growth rates are well below ExB shearing rates, is turbulence micro-tearing?
 - Can we see interplay between turbulence levels, ExB, and zonal flows?
- Turbulent and coherent modes:
 - Structure and magnitude of δB .

List of Diagnostics and Measured Quantities

- Doppler Reflectometry
 - Fluctuations with k selectivity (2-10 cm⁻¹).
 - Time- and space-resolved velocity measurements.
 - > E_r (ExB shear and connection to turbulence)
 - > v_{phase} (when $v_{ExB} \sim 0$, turbulence ID)
 - $> \delta v_{ExB}$ (Zonal Flows, GAMs)
- Fast Radial-View Interferometry/Polarimetry Array
 - MHz time response.
 - $\delta \Psi$ proportional to δB (when beam is through axis).
 - J_0 from d Ψ /dz. Constraint to EFIT. Complements MSE.

Principles of Doppler Reflectometry

wavevector selection: (Bragg condition) $K_{\perp} = 2k_0 \sin(\theta_{\text{tilt}})$ wavevector resolution: (Gaussian beam: $w=e^{-1}$ width of amplitude) $\delta K_{\perp} = 2\sqrt{2}/w$ frequency shift (-1 order):

$$\Delta \omega = \overrightarrow{K} \cdot \overrightarrow{v} \simeq K_{\perp} v_{\perp}$$

fluctuation velocity:

 $v_{\perp} = v_{E \times B} + v_{\rm ph}$

Measured quantities.

- 1) Tilt angle $heta_{ ext{tilt}}$ selects k .
- 2) For small $\delta n/n$, received power vs θ_{tilt} gives k spectrum.
- 3) Can measure mean flow and perturbations. If $v_{ExB} \gg v_{ph'}$, then $\Delta \omega$ gives v_{ExB} or E_r . If $v_{ExB} \sim 0$, $\Delta \omega$ gives v_{ph} .

Doppler Reflectometry Results from ASDEX

NSTX 5 Year Planning Mini-Workshop, February 19, 2007

Case 3: $\widetilde{v}_{E\times B}~$ - Plasma flow perturbations

 $f_{\rm D} = 2 (v_{\rm E \times B} + v_{\rm ph}) \sin \theta_{\rm t} / \lambda_{\rm o}$ $\tilde{v}_{\rm ph} = 0 \qquad \tilde{\theta}_{\rm t} \& \tilde{B} \text{ small (no MHD)}$

- $\tilde{E}_{r} \rightarrow \tilde{u}_{\perp} \rightarrow \tilde{f}_{D}$ while $\tilde{n}/n \rightarrow \tilde{A}$ at selected k_{\perp}
- MHD appears in both \tilde{f}_{D} and \tilde{A}
- Coherent oscillations \rightarrow Geodesic Acoustic Mode (Zonal flow)
- Important : Turbulence drives ZF \rightarrow regulate turb. (saturation mechanism) \rightarrow transport

Preliminary Measurements from DIII-D

FDTD 2D Code for Design and Interpretation

- UCLA 2-D FDTD code developed for simulating dopper reflectometer response to 2-D profiles and turbulence.
 - O-mode, X-mode or mixed O- and X-mode (can handle mode conversion due to magnetic shear).

Fast Radial-View Polarimetry Principles

Faraday Rotation Angle

$$\Psi = 2.62 \times 10^{-13} \lambda^2 \int n(z) \vec{B(z)} \cdot \vec{dl} = 2.62 \times 10^{-13} \lambda^2 \int B_{\parallel} n(z) dz$$

Fluctuating Part

$$\tilde{\Psi} = 2.62 \times 10^{-13} \lambda^2 \int \left[\tilde{B}_{\parallel}(z) n_0(z) dz + B_{\parallel 0} \tilde{n}(z) \right] dz$$

Equilibrium Part

$$\Psi_0 = 2.62 \times 10^{-13} \lambda^2 \int B_{\parallel 0}(z) n_0(z) dz$$

$$\frac{\partial \Psi_0}{\partial z} \propto \frac{\partial B_\theta}{\partial r} = J(0)$$
$$\tilde{\Psi}(z=0) \propto \int \tilde{B}_r(z) n_0(z) dz$$

Fast Radial-View Interferometry/Polarimetry Array on NSTX

Arrangement for Generating Two Orthogonally Polarized, Frequency Offset Beams

Optical Arrangement for Polarimetry on NSTX

