Possible T&T research directions towards CTF

Presents D. Stutman

Johns Hopkins University

CTF based on flat profile, high T_e, T_i H-mode

- Flat, high T profiles, sharp pedestal for bootstrap current, macro and micro-stability
- τ_{E} scaling experiments suggest significant differences from large-A (S. Kaye)
- Assume ion transport will remain about neoclassical (large V_t, ExB in CTF)
- Focus T&T on H-mode core and pedestal (diagnostics, theory)
- Study electron transport vs. B_t , I_p , P_{heat} , q and ExB

B_t and I_p effects (S. Kaye)

4 MW NBI

B_t scan at 0.7 MA

 I_{p} scan at 0.55 T

 I_p scan at fixed I_p/B_t

- Increasing B_t broadens region of high T_e , but $T_e(0) \sim \text{const.}$ (lesser effect at high I_p)
- Increasing I_p at fixed B_t improves, but mainly ion channel
- However, increasing both I_p and B_t can double T_e ; why ?
- Very complex H-mode transport picture from equilibrium studies (L-mode better)
- Help from perturbative transport studies

P_{heat} effects studied in perturbative experiments

- Central electron transport degrades with P_{heat}
- Non-diagonal transport $(\nabla T_e/T_e=ct.)$; heat flux ?
- Scaling with B_t and I_p (08)
- 'Overpower' the CTF for broad T_e ?
- Perturbative result supports/clarifies equilibrium picture

Perturbations suggests magnetic transport at high P_{heat}

$$\begin{array}{l} \mathsf{D}_{\mathsf{magn}} \approx \mathsf{V}_{\mathsf{II}} \, (\Delta \mathsf{B}_{\mathsf{r}}/\mathsf{B})^2 \, \mathsf{L}_s \\ \downarrow \\ \mathsf{D}_i \approx \chi_i \approx \chi_e \, \sqrt{(\mathsf{m}_e/\mathsf{m}_i)} \\ \downarrow \\ \chi_e \, / \, \mathsf{D}_{\mathsf{Ne}} \approx \oslash \, (10^2) \end{array}$$

- About 10² gap between perturbed electron thermal and impurity diffusivity
- μ -tearing χ_e in the range of experiments (K. Wong)

Strong q effects also revealed in perturbative experiments

- Comparable magnetic shear
- Role of integer q-surfaces at large r/a (07)
- Synergy with equilibrium picture

Unusual perturbative effects seen also in T_i and rotation

Proposed T&T research methodology

- Routine perturbative + equilibrium studies to resolve/understand scalings
- Use also I_p , B_t (?), heating profile (EBW), q, ExB perturbations
- New perturbative tools: high-Z TESPEL pellets, SGI, EBW, RWM coils
- Fast CHERS for T_i, V_t perturbations
- Add low-k $n_e(n_z)$ fluctuations in H-mode core and pedestal
- Magnetic fluctuations (MSE ?), T_e fluctuations (EBW ?, USXR + TESPEL ?)
- Theory: unified treatment of ion and electron scales

(prey-predator relation suggested by experiment)

JHU proposed T&T diagnostics

Pedestal/edge multi-energy SXR-VUV arrays for perturbative electron and particle transport

USXR-BES Telescope for low-k fluctuations at r < 0.3 (flat T_e)

