Supported by

NSTX Progress and Plans for Wave-Particle Interactions

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL **PPPL** PSI Princeton U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

From the Mid-term Review of Major MFE Facilities Gaithersburg, MD September 21, 2006

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep

Office of

Science

Wave-Particle Interaction Research

Major accomplishments

- Demonstration & understanding of HHFW core heating & current drive
- Demonstrated possibility of high-power coupling to EBW
- Discovered several new fast-ion-driven instabilities
- Observe non-linear coupling of multiple fast-ion modes

NSTX is developing innovative wave heating and current drive techniques in a unique wave parameter regime

- High $\beta \rightarrow$ over-dense plasma ($\omega_{pe} > \Omega_{ce}$) with low v_A
 - Lower Hybrid and Electron Cyclotron (EC) waves do not propagate
 - Fast Alfvén Waves propagate with strong single-pass electron absorption
 - Electron Bernstein Wave (EBW) \rightarrow no n_e limit + localized absorption
 - EBW current drive 2-4 \times more efficient than Electron Cyclotron current drive
- Complementary NSTX characteristics
 - Fast Wave also used for core current drive in AT plasmas of DIII-D
 - Efficient off-axis Ohkawa current drive physics relevant to AT

• NSTX High-Harmonic Fast Wave (HHFW) heating and current drive research utilizes world's most sophisticated ICRF launcher:

- 12 strap antenna, 6MW capability
- 6 independent transmitters
- Real-time control of launched k_{II} from 0 to 14m⁻¹

oml

🔶 GENERAL ATOMICS

HHFW has successfully heated electrons and demonstrated core current drive in NSTX

e 🔘 NSTX

- However, HHFW heating of core electrons is not always robust
 - Observe HHFW acceleration of NBI fast ions A.L. Rosenberg, Phys. Plasmas 11, 2441 (2004)

Improved understanding of HHFW edge interactions motivates changes to HHFW system for more efficient heating & CD

- Parametric Decay Instability (PDI) of HHFW → IBW → edge ion heating
 - PDI increases with lower k_{II} and/or B_T
 - Low k_{\parallel} used for HHFW current drive
 - Low B_{T} needed for high β

– dB/dt probe data consistent with lower edge wave amplitude at high ${\rm k}_{\rm II}$

Both results imply higher k_{II} should improve HHFW core electron heating

Key Research Results and Plans for HHFW

DNSTX

- Achieved high T_e =3.6keV in current drive phasing for first time using high B_T = 5.5kG
 - Improvement consistent with reduced PDI and surface waves expected at higher B_T
 - Expect similar improvements from higher k
 - Useful for HHFW-CD during ramp-up
 - Useful for HHFW heating at high- β

PLANS:

J. Menard, IAEA 2006

- Continue RF edge studies investigating causes of parasitic absorption (FY07-08)
 - Surface wave excitation damping + parametric decay instability ion heating
 - Additional RF probes to measure waves in plasma periphery
 - UCLA reflectometer upgrade to measure higher edge densities for RF studies
- HHFW antenna modification \Rightarrow directed spectra at 11m⁻¹ for improved CD (FY-09)
 - High power operation capable of heating $T_e \sim 50 \text{eV}$ plasma with 28m^{-1}

New physics understanding enabled by study of wave physics in over-dense plasmas

- Off-axis and efficient CD required for high β_T =40%, f_{NI} = 100% integrated scenarios.
- EBW holds promise of taking advantage of unique, high trapping region: Ohkawa current drive:

• 0.4 < ρ < 0.7 → ζ_{EBW-CD} = 0.4
• 2× more efficient than ECCD
• 8× more efficient than HHFW
³)
$$I_p(A) × R(m) × n_e (10^{19}m^{-1})$$

ζ_{CD} = 3.27 × $P(W) × T_e(keV)$

 For concept innovation: establish wave physics understanding for high beta fusion systems

Initial measurements of B-X-O emission on NSTX confirm possibility of high-power coupling to EBW

- Frequency range:
 - 1st & 2nd harmonic: 8-18GHz
 - 2nd & 3rd : 18-40 GHz
- Directionality:
 - ±10° steering in poloidal and toroidal directions
- Antenna acceptance angles:
 - $-8-18GHz \sim 22^{\circ}$, 18-40GHz $\sim 14^{\circ}$

- High EBW coupling efficiency for broad range of antenna pointing angles in L-mode:
 G. Taylor, Phys. Plasmas 12 052511 (2005)
- But, poor apparent coupling efficiency (< 30%) observed in H-mode discharges

Key Research Results and Plans for EBW

- Evidence for collisional damping at f_{UHR} and possibility for 2f_{ce} overlap
- 2006: Angle/freq. scans confirm 2005 result:
 - Strong coupling in L-mode, poor in H-mode

PLANS:

- Implement 100-200kW 15.3-28GHz EBW system w/ ORNL gyrotrons (FY08)
 - EC pre-ionization & heating for CHI & PF-only startup plasmas (low n_e, T_e)
 - EBW coupling studies + initial electron heating experiments
- Test EBW coupling models for L & H-mode plasmas (FY07-08) (Ph.D. Thesis)
 - Experiments to understand cause of apparent poor coupling in H-modes
- Enhanced understanding & modeling through collaboration (FY07-08)
 - MAST collaboration: 28GHz startup/ramp-up (FY-07), B-X-O (FY07-08)
 - Include EBW mode conversion in GENRAY, optimize EBWCD scenarios [MIT]
 - Radial transport, Ohkawa anti-pinch effect on BS CQL3D/GENRAY [Comp-X]
 - Also EBE from non-thermal electrons same model used for ECE on ITER

NSTX is an excellent test-bed for simulation and validation of critical fast ion physics for burning plasmas

- NSTX uniquely able to mimic ITER in v_{fast} / v_{Alfven} and β_{fast} while maintaining full diagnostic capability, in particular MSE
 - ρ_{fast}^* does not overlap with ITER
- NSTX shows nonlinear physics of wave-particle resonance overlap, similar to ITER, due to large β_{fast}
- Can also study fast ion physics expected for ST-based CTF

Many fast particle discoveries made on NSTX

NSTX accesses ITER-relevant fast-ion phase-space island overlap regime with full diagnostic coverage

- ITER will operate in new, small ρ^{\star} regime for fast ion transport
 - $k_{\perp}\rho$ \approx 1 means "short" wavelength Alfvén modes
 - Fast ion transport expected from interaction of many modes
 - NSTX can study multi-mode regime while measuring MSE q profile
 - NSTX observes that multi-mode TAE bursts induce larger fast-ion losses than single-mode bursts:

E. Fredrickson, Phys. Plasmas 13, 056109 (2006)

Non-linear TAE simulations (single-*n*) reproduce many features observed in NSTX data

- Mode growth and decay times ≈ 50 100 μs
- Bursting/chirping behavior results from:
 - Non-linear modification of fast-ion distribution
 - Change in mode structure
 - Predicted to be present on ITER

G.Y. Fu IAEA FEC (2004)

Simulations → Mode moves radially outward during amplitude saturation <

108530

- New non-linear TAE simulations with multiple n's (not shown) predict:
 - *n*=2 mode non-linearly saturates at higher amplitude than in single-*n* case
 - n=2 mode can be driven non-linearly by dominant n=1
 - Mode structure changes significantly due to non-linear evolution
- Comparisons to experiment just beginning...

t = 0.267

-2

0.6

0.6 0.4 0.2 U 0 --0.2 --0.4

> -0.6 -0.8

> > 100

200

300 time

Data

200µs

Simulation

Reflectometry data reveals 3-wave coupling of distinct fast-ion instabilities for first time

Large EPM → TAE phase locks to EPM

forming toroidally localized wave-packet

• In absence of EPM, TAE modes do not form toroidally localized wave-packets

Influence of toroidal localization of TAE mode energy on fast ion transport and EPM/TAE stability presently being investigated

• Low-f EPMs co-exist with mid-f TAE modes

Bi-coherence analysis reveals 3-wave coupling between 1 EPM and 2 TAE modes

N. Crocker, Phys. Rev. Lett. 97, 045002 (2006)

Mid-Term Review 06 - NSTX / Menard

UCLA

Hole-clump pair with GAE mode and bounce resonance fishbone discovered on NSTX

E. Fredrickson, Phys. Plasmas 13, 056109 (2006)

- High frequency (GAE) hole-clump pair mode observed driven by energetically inverted velocity space distribution
 - Hole-clump behavior more commonly observed for TAE modes
- Hole-clump mode frequency evolution $\Delta f \propto \Delta t^{1/2}$ prediction by Berk et al., (PoP, '99)

E. Fredrickson, Nucl. Fusion 43, 1258 (2003)

- Bounce fishbones present at low aspect ratio where bounce frequency is low
- Modes identified by calculating bounce and precession frequency ranges and comparing to Doppler shifted mode frequencies
- High-n modes are bounce resonance, n=1 are regular precession resonance fishbone

Research Plans for Energetic Particle Physics

- TAE avalanche threshold physics important for ITER (MDC-9)
 - Determine scaling of structure, stability, losses vs. q profile, v_{fast} / v_{Alfven} (FY07-08)
- Fast-ion MHD impact on NBICD important for ITER, CTF (SSO-2.2)
 - Validate/test bootstrap/beam-driven current models (TRANSP) (FY06-08)
 - Compare to J(r) evolution in plasmas with and w/o energetic particle MHD
- Comprehensive diagnosis of mode structure and fast-ion diffusion (MDC-9)
 - MSE measurement of current profile (FY07-08)
 - Mode structure: FIReTIP, reflectometer, δB polarization from Mirnovs (FY-07)
 - Fast ion loss: fast lost ion probe, solid-state & scanning E || B NPAs (FY06-08)
 - Fast ion $f(E,\rho)$: Fast Ion D-alpha (FIDA) diagnostic (FY-08)