Non-Thermal Wave-Particle Modeling for NSTX
(CompX, in collaboration with PPPL, MIT, ORNL)

Outline:

*Past modeling examined non-thermal electron distribution effects of EBW heating
and current drive:
-EBWCD in 5, 20 and 40% beta NSTX model discharges (Taylor, Harvey, et al, PoP '04)
-Synergy of EBWCD and BSCD (Harvey and Taylor, PoP '05)
-Non-thermal EBW emission from model discharges (Harvey, Smirnov, Taylor,
et al, EC-14'06)

*HHFW simulations of time-dependent non-thermal ion distributions (Rosenberg et al,
PoP, '04)

This presents context for:
*Present NSTX efforts

eFuture efforts



GENRAY/CQL3D Modeling of EBWCD
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Can Access Region Requiring EBWCD to
Stabilize High B Non-Inductive Plasma
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« GENRAY ray tracing & CQL3D Fokker-
Planck codes model NSTX EBWCD

Major Radius (m)

G. Taylor, et al ., Phys. Plasmas 11, 4733 (2004)
R.W. Harvey & G. Taylor, Phys. Plasmas 12, 051509 (2005)

— Need efficient coupling of RF power to EBWS; assess oblique
O-X-B coupling by measuring B-X-O emission (EBE)



Electron Bernstein Emission Due to Nonthermal
Distributions in NSTX

® GENRAY calculates electron Bernstein wave emission (EBWE) from thermal or
non-thermal distributions (and is also an all frequencies ray tracing code).

® Emission and absorption are calculated at each point along an EBW ray,
and the radiation transport eqn (below) is back-solved to the detector.

® A hot plasma dispersion relation (Forest) and a relativistic calculation of the
emission and absorption is used.

® The BXO (Bernstein-X-O mode conversion) emission window is found with a shooting
algorithm to obtain th/e central ray angles for a given receiver (antenna) position, such
that |n|=(1+w/w,)"", giving 100% transmission (Kopecky et al., J. PI. Phys., 1969).

Radiation Transport Equation for radiation intensity, I, per (vol freq ster):

ns.V(n’I=j—«l
n,= Ray refractive index
= Ray direction (parallel to group velocity

§
J= Radiated power per (volume - radian freq * steradian) [See underneath pg]
x= Absorption coefficient [See underneath pg]



Comparison of EBWE from Thermal and Non-Thermal
NSTX Shot (113544) [With next few slides]

Non-Thermal Dististributions used Radial variation of EBWCD
for calcs vs rho (here = 0.59) vs rho. 1MW EBW, 47 kA.
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Ray Characteristics in 1st-2nd Harm Range (10-17GHz)
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High Freq Radiation Gives Strong Nonthermal Trad,
whereas, Low Freq Gives Near Thermal Trad
(Low Beta case)

® This result depends on whether there is large n_par (high freq), or small (low freq)
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==> EBWE a flexible means to examine both thermal and non-thermal distributions



HHFW Modeling with GENRAY and CQL3D
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New Capabilities:

*NPA (Vincent Tang, MIT work.
Compared well with expt.

*Approx Neocl transport model

*More harmonics

*Coupled to AORSA for RF (as
alternate to GENRAY)

Future Work:

*Multi-ion QL diffusion

*Improved t-dependent, radial diffusion
*Finite gc orbit width effects

*FIDA synthetic diagnostic (Heidbrink)



Good agreement between NPA observations and CQL3D simulation is obtained
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at high k, but NPA is much less than simulation at low k;, (Rosenberg)
DNsTX

18 _i\ energy (0 V) — Ny=24 mcas.': -E; energy (B0 keV) ™ I_\Tq)_ 2_4 ‘

[ 3 i [ 3 = == simulation ]
16} ; — T Mg 2em. - ) 108260 ]

: | - T I Ny=12 ]
14 Y B p 5 n simulation
12 1 F!
10F 1 F e
8} 1 count level _ 1 count level

0O 20 40 60 80 100 120 140 O 20 40 60 80 100 120 140

Energy (keV) Energy (keV)
e NO k|| evolution measurement available

« Edge-coupling effects, theory breakdown at low k7

— To be further investigated

e Recent work in DIII-D shows importance of radial transport and
possible importance for small H-fraction in the D-plasma.



Present, Future, and Ongoing (separately funded) work

*Present NSTX effort is directed towards:
-improvements in GENRAY OXB coupling of EBW calculation (w collisional damping)
-improvements in GENRAY FW and LH ray launching (also prop'n outside separatrix)
-EBW coupling with AORSA1D (with Jaeger and Ram)
-EBWCD in ARIES-ST (Nelson-Melby et al., submitted to PPCF '07)
-Benchmarking of EBW ray tracing and FP calculation vs Culham codes (w Saveliev)

*Future NSTX effort:
-Radial transport effects on EBWCD
-HHFW/NBI modeling of nonthermal ions, including radial transport (impt in DIII-D)
-Improvement of(/contributions to) synthetic diagnostics (NPA, FIDA, lon loss,....)
-Coupling GENRAY and CQL3D to TRANSP

*Additional ongoing work of use for NSTX modeling:
-Finite banana effects (under separate Theory contract)
-RF-SciDAC coupling of CQL3D to TORIC, for faster full-wave analysis (than AORSA)
-SWIM (RF and MHD) project, coupling transport, RF and MHD codes



