Draft FY09-13 NSTX energetic particle physics research plan

- Research goals
- Results from NSTX EPP studies
- FY09-13 Research plan

NSTX Wave-Particle Research Planning Meeting

STX

Energetic particle studies aid fusion energy development

- Confinement of fusion alphas key to fusion reactors
 - Alphas required to ignite fusion plasma
 - Loss of energetic alphas will damage PFC's
 - Of particular concern to ST's with large alpha ρ^{\star}
- Much progress has been made with Mirnov coils, reflectometers, NPA, equilibrium diagnostics...
- ...but questions remain that can only be answered by new capabilities:
 - FIDA to measure confined fast ion distribution function
 - Higher spatial resolution of mode structures
 - Faster diagnostics
 - Active control of *AE modes (RF beatwave, "low frequency" sources for HHFW antenna

≈30 journal articles on NSTX energetic particle studies

- Discovery documentation of CAE/GAE modes
 - Doppler-shifted cyclotron drive
- Studies of multi-mode transport (TAE modes)
- New understanding of chirping modes (CAE angelfish, TAE chirping modes)
 - HHFW stabilization of Angels
- Bounce-resonance fishbones
- Beta-induced Alfvén Acoustic Modes
- Beta scaling of Alfvén Cascades, validation of AC-GAM coupling model.
- Measurements of mode polarization

VSTX

TAE Avalanches cause large fast ion loss

- Sequence of avalanches produced demonstrating multi-mode fast ion transport.
- Strong drops in neutron rate were seen, correlated with avalanche events.
- Many avalanches did not have n=1 "fishbone" modes.
- Avalanches typically involved strong frequency chirping - maybe as important as multi-mode.
- q-profile documented with Source A timing scan.

Alfvén Cascades discovered at low β on NSTX

Observations support recent theoretical models suggesting modes stable at typical ST β 's. Shots had exceptionally low density, $\approx 10^{13}$ /cm³ on axis, β less than $\approx 3\%$. Mode frequency sweeps upwards, saturates near TAE frequency.

2.5 2.0 2.0 2.0 0.5

0.25

time(s)

0.30

0.35

0.40

0.15

0.20

Progression of toroidal mode numbers consistent with Alfvén Cascades (2, 2+1, 3, 2, 3, 4) including "grand" Cascade around 180 ms at q_{min} = 2 crossing.

Study of hole-clumps addresses important area of physics for ITER

- Hole-clumps give insight on instability drive, damping, and v_{eff}.
 Non-linear physics of mode saturation; vital for predicting impact on fast ion confinement
- Heating the fast ion population with HHFW, increases $\nu_{\text{eff}},$ provides a window on fast ion distribution.

New regimes lead to new instabilities - unsafe at any $\beta_{\text{fast}}?$

- Grey, red and green shaded regions show frequency range for n=1, n=2 and n=3 BAAEs, respectively.
- Upper black, red and green lines are core n=1, 2 and 3 TAE frequencies.

$$\omega_0^2 = \omega_+^2 \left[1 + \left\{\frac{\delta(1+2q^2)}{1+\delta}\right\}^{1/2}\right]^{-2}$$
$$\omega_+^2 = \omega_{Alfvén}^2 \frac{\delta}{1+\delta}$$
$$\omega_{Alfvén} = \frac{V_{Alfvén}}{R_0}$$
$$\delta = \frac{\gamma \beta_{tor}}{2}, \ \gamma = \frac{5}{3}$$
$$\omega_- = 2\omega_0 - \omega_+$$

7

Advances in theoretical understanding spurred by NSTX results

- Alternative resonant drives, e.g., bounce resonance driven fishbones, Doppler-shifted cyclotron resonances
- NOVA
 - Coupling to acoustic modes
- M3D-K
 - Non-linear code up and running
 - Chirping TAE modes
 - Towards TAE avalanches?
- HYM
 - Non-linear growth of CAE and GAE

Outline of goals for next five years

- Multi-mode driven Energetic Particle effects (ITPA relevant)
 - mode saturation, avalanche physics
 - transport of EP, modification of distribution function
 - effects on current drive (similarity with DIII-D)
 - interplay between different modes (fishbones, EPMs, NTMs...)
 - B, P, rho scalings to explore uniqueness of STs
- Phase space engineering through high frequency mode physics
 - CAE/GAE chirping effects to study velocity diffusion
 - Study energy channeling via CAE/GAE excitations
 - Stochastic thermal ion heating
 - Measure higher cyclotron harmonics of CAEs
 - Excitation of *AE by beat RF wave

5-year goals, cont.

- Address unique ST physics
 - High beta (normal to NSTX) study of two fundamental MHD branches interaction: Alfven and acoustic
 - MHD spectroscopy at high beta via RSAEs (cascades), Alfven-acoustic modes
 - Bounce frequency fishbones
 - NTM interaction with EP (high beta, low aspect ration)
 - Make use of mode chirping to address chirping frequency physics: potentially can be used to diagnose mode growth rate and amplitudes of modes

STX

Diagnostic/hardware investments

- FIDA, extended SSNPA?
- Additional fast Mirnov coils,
 - better polarization measurements
 - Better poloidal arrays
 - Center-stack measurements
- Faster scanning reflectometer
- Extend Firetip to ≈2.5 MHz bandwidth
- Beatwave capability for HHFW to 1.5 MHz
- Low frequency sources for HHFW antenna

VSTX

Energetic Particle Studies Research Plan

<u>FY09</u>

- Extensive documentation of fast ion redistribution with FIDA, NPA, FLIP and multi-channel reflectometers for TAE avalanches and fishbones.
- Develop beatwave capability for TAE range of frequencies
- Extend polarization and toroidal Mirnov coil arrays
- Passive observation of CAE/GAE with HHFW antenna.
 <u>FY10</u>
- Extend beatwave capability to CAE/GAE range of frequencies - measure mode damping rates
- Faster "scanning" reflectometer to measure TAE mode structure.
- Low power, low frequency excitation of TAE/CAE

FY11-13 Research Plan

<u>FY11</u>

- Control mode chirping with HHFW
- Study multi-mode interactions (f.b., TAE, CAE, ...)
- Determine stochastic ion heating thresholds
- Measure antenna loading

FY12-13

- Add high power, low frequency source to excite CAE to stochastic heating threshold
- Study multi-mode interactions (f.b., TAE, CAE, ...)

VSTX