Generation and Sustainment of Rotation in Tokamaks

By W.M. Solomon¹

In Collaboration with

K.H. Burrell², A.M. Garofalo², S.M. Kaye¹, R.E. Bell¹, A.J. Cole³, J.S. deGrassie², T.S. Hahm¹, G.L. Jackson², M.J. Lanctot⁴, J.-K. Park¹, C.C. Petty², H. Reimerdes⁴, S.A. Sabbagh⁴, E.J. Strait², and R.E. Waltz²

- 1 Princeton Plasma Physics Laboratory, Princeton, NJ, USA
- 2 General Atomics, San Diego, CA, USA
- 3 University of Wisconsin, Madison, WI, USA
- 4 Columbia University, New York, USA

51st APS-DPP meeting Atlanta, GA

November 2-6, 2009

Motivation

- Rotation is generally considered to offer benefits to fusion performance through improvements in stability (NTM, RWM, error field tolerance) and confinement (turbulence suppression via ExB shear)
- In present devices, rotation is usually driven by external means through neutral beam input, as a by-product of heating
- In future burning plasmas including ITER, using beams for momentum input becomes increasingly challenging
- Strong need for alternate means of driving rotation in ITER

Outline: Recent Techniques for Manipulating Rotation

$$mnR \frac{\partial V_{\phi}}{\partial t} = \sum_{\substack{\text{Input torque} \\ \text{angular momentum}}} - \nabla \cdot \Pi_{\phi} - \frac{mnR(V_{\phi} - V_{\phi}^*)}{\tau_{damp}} + \dots$$
Rate of change of angular momentum

$$\nabla \cdot \Pi_{\phi}$$
 • Intrinsic Rotation Drive

Generation at the edge

- + Inward pinch of momentum
- + Additional drive in core

 Sheared rotation profiles

$$\underline{mnR(V_{\phi} - V_{\phi}^{*})} \longrightarrow$$

 τ_{damp}

Rotation Drive By Non-Resonant Magnetic Fields

Drag to offset rotation

+ Enhancement of torque at slow rotation

Outline:

Recent Techniques for Manipulating Rotation

$$\underline{mnR} \frac{\partial V_{\phi}}{\partial t} = \sum_{\substack{\text{Input torque} \\ \text{angular momentum}}} - \nabla \cdot \Pi_{\phi} + \underbrace{\frac{mnR(V_{\phi} - V_{\phi}^*)}{\tau_{damp}}}_{\substack{\text{Viscous drag}}} + \dots$$

$$\nabla \cdot \Pi_{\phi}$$

Intrinsic Rotation Drive

Generation at the edge

- + Inward pinch of momentum
- + Additional drive in core

 Sheared rotation profiles

 τ_{damp}

Rotation Drive By Non-Resonant Magnetic Fields

Drag to offset rotation

+ Enhancement of torque at slow rotation

Intrinsic Rotation Should Manifest Itself From Residual Stress Term In Transport Equation

Expand transport term in angular momentum balance equation

$$\underline{mnR} \frac{\partial V_{\phi}}{\partial t} = \sum_{\substack{\text{Input torque} \\ \text{of momentum}}} - \nabla \cdot \left(- mnR \left(\underbrace{\chi_{\phi} \frac{\partial V_{\phi}}{\partial r} - V_{\phi} V_{pinch}}_{\text{diffusion}} \right) + \underbrace{\Pi_{RS}}_{\substack{\text{Residual stress} \\ \text{"Intrinsic source"}}} \right)$$

 Non-diffusive momentum transport recognized both experimentally and theoretically

[Ida et al PRL 1995, Coppi NF 2002, Hahm PoP 2007, Yoshida NF 2007, Solomon PPCF 2007, ...]

- Terms independent of V_b → "Residual stress"
 - ExB shear [Dominguez and Staebler PoFB 1993; Gurcan et al PoP 2007]
 - Up-down asymmetries in geometry [Camenen, PRL 2009]
 - Fluctuation intensity shear [Diamond PoP 2008]

A Finite External Torque Is Required To Overcome Intrinsic Rotation and Bring The Plasma To Rest

In steady state, NBI torque balanced against momentum flows

$$mnR \frac{\partial V_{\phi}}{\partial t} = \sum_{\substack{\text{Input torque} \\ \text{of momentum}}} \nabla \cdot \left(-mnR \left(\frac{\partial V_{\phi}}{\partial r} - V_{\phi} V_{pinch} \right) + \prod_{\substack{\text{Residual stress} \\ \text{"Intrinsic source"}}} \right)$$

 When V_φ is zero, applied NBI torque balances "residual stress" drive

Good Correlation Found Between Edge Intrinsic Drive and Total Edge Pressure Gradient

Residual stress drives effective intrinsic source, worth about one co-neutral beam source

$$\eta_{\text{intrinsc}} = -\nabla \cdot \Pi_{RS} \quad \eta_{NBI} + \eta_{\text{intrinsic}} = 0$$

$$\rightarrow \quad \eta_{\text{intrinsic}} = -\eta_{NBI}$$

- Significant drive of torque at edge
- H-mode pedestal provides universal mechanism to drive residual stress

[eg Diamond et al NF 2009]

- GTS simulations show residual stress driven from ITG increases with R/L_{Ti} [See W. Wang, Thurs UP8.00083]
- Means of achieving edge rotation in future devices

Outline:

Recent Techniques for Manipulating Rotation

$$\underline{mnR} \frac{\partial V_{\phi}}{\partial t} = \sum_{\substack{\text{Input torque} \\ \text{angular momentum}}} - \nabla \cdot \Pi_{\phi} + \underline{\frac{mnR(V_{\phi} - V_{\phi}^*)}{\tau_{damp}}} + \dots$$

$$\nabla \cdot \Pi_{\phi}$$

Intrinsic Rotation Drive

Generation at the edge

- + Inward pinch of momentum
- + Additional drive in core

 Sheared rotation profiles

 τ_{damp}

Rotation Drive By Non-Resonant Magnetic Fields

Drag to offset rotation

+ Enhancement of torque at slow rotation

Momentum Pinch Velocities Are Investigated on Both NSTX and DIII-D Using Perturbative Techniques

On DIII-D, co/counter beams

 NSTX has also used unbalanced NBI perturbation for core pinch studies On both NSTX and DIII-D, n=3 non-resonant magnetic fields

Diffusive And Pinch Model Necessary To Describe Momentum Flow Evolution

Flow of momentum through given radius is

$$M(\rho) = \int_0^{\rho} \nabla \bullet \Pi_{\phi} dV$$

- Non-linear least squares fitter used to solve for timeindependent χ_φ and V_{pinch} to best reproduce momentum flow
 - Fit without pinch poor
- Although residual stress terms neglected, fit appears adequate in these plasmas

Good Agreement Found Between Theory And Experiment On Both NSTX And DIII-D

- Theory predicts drive of momentum pinch through low-k turbulence
 - Peeters et al. PRL (2007)
 - Hahm et al. PoP (2007)

$$V_{Peeters} = \frac{\chi_{\phi}}{R} \left[-4 - \frac{R}{L_n} \right]$$

$$V_{Hahm} = \frac{\chi_{\phi}}{R} \left[-4 \right]$$

Rotation Peaking From Pinch Only Shows Weak Dependence on Collisionality

- Data shows both pinch and diffusivity reduced at low collisionality
- Overlap between datasets likely fortuitous

NSTX: H-mode

- DIII-D: L-mode

- What physics responsible for enhanced pinch "branch"?
- Ratio of V_{pinch}/χ_φ determines peaking
 - Slight reduction at very low collisionality [cf Yoshida NF 2009]

Outline:

Recent Techniques for Manipulating Rotation

$$\underline{mnR} \frac{\partial V_{\phi}}{\partial t} = \sum_{\substack{\text{Input torque} \\ \text{angular momentum}}} - \nabla \cdot \Pi_{\phi} + \underbrace{\frac{mnR(V_{\phi} - V_{\phi}^*)}{\tau_{damp}}}_{\substack{\text{Viscous drag}}} + \dots$$

$$\nabla \cdot \Pi_{\phi}$$

Intrinsic Rotation Drive

Generation at the edge

- + Inward pinch of momentum
- + Additional drive in core
 Sheared rotation profiles

 τ_{damp}

Rotation Drive By Non-Resonant Magnetic Fields

Drag to offset rotation

+ Enhancement of torque at slow rotation

ECH Is Found To Modify Intrinsic Rotation In Core; Evidence of ECH-Induced Drive of Counter Rotation

- GYRO simulations can generate momentum flows of the correct magnitude
 - But extreme sensitivity to profiles
- Generally core intrinsic torque relatively small compared with edge...

ECH Is Found To Modify Intrinsic Rotation In Core; Evidence of ECH-Induced Drive of Counter Rotation

- GYRO simulations can generate momentum flows of the correct magnitude
 - But extreme sensitivity to profiles

Generally core intrinsic torque relatively small compared with

Application of High Harmonic Fast Wave Heating on NSTX Also Appears To Drive Counter Torque in Core

- RF only rotation profile shows significant rotation at the edge, but practically zero rotation in the core
 - Edge intrinsic rotation + diffusion → flat rotation profile
 + inward pinch → peaked rotation profile
- Hollow rotation profile suggests with a counter torque in the core
- Other modifications to core intrinsic rotation include
 - ECH on JT-60U (driving opposite rotation) [Yoshida PRL 2009]
 - LHCD from C-Mod [Rice NF 2009]

Hosea, RF conference (2009) Taylor, APS TI3.00002 (Thursday)

Outline: Recent Techniques for Manipulating Rotation

$$mnR \frac{\partial V_{\phi}}{\partial t} = \sum_{\substack{\eta \in \mathbb{Z} \\ \text{angular momentum}}} \sum_{\substack{\eta \in \mathbb{Z} \\ \text{Input torque} \\ \text{Transport}}} \underbrace{mnR(V_{\phi} - V_{\phi}^{*})}_{\substack{\tau_{damp} \\ \text{Viscous drag}}} + \dots$$

$$\nabla \cdot \Pi_{\phi}$$

Intrinsic Rotation Drive

Generation at the edge

- + Inward pinch of momentum
- + Additional drive in core

 Sheared rotation profiles

 τ_{damp}

Rotation Drive By Non-Resonant Magnetic Fields

Drag to offset rotation

+ Enhancement of torque at slow rotation

Previous Work Has Shown That Non-Resonant Magnetic Fields (NRMFs) Apply a Torque

 Rotation dragged toward finite rotation condition ("offset rotation")
 [Cole PRL 2007, Callen Pop 2009]

$$\eta_{\text{NRMF}} \sim -\delta B^2 (V_{\phi} - V_{\phi}^*)$$

- Can be exploited as drive of counter rotation
- Basic properties of NRMF torque have been characterized
 - Validated through full timedependent analysis of rotation profile

Outline: Recent Techniques for Manipulating Rotation

$$mnR \frac{\partial V_{\phi}}{\partial t} = \sum_{\substack{\eta \in \mathbb{Z} \\ \text{angular momentum}}} \sum_{\substack{\eta \in \mathbb{Z} \\ \text{Input torque} \\ \text{Transport}}} \frac{mnR(V_{\phi} - V_{\phi}^{\uparrow})}{\tau_{damp}} \dots$$

$$\nabla \cdot \Pi_{\phi}$$

Intrinsic Rotation Drive

Generation at the edge

- + Inward pinch of momentum
- + Additional drive in core

 Sheared rotation profiles

 τ_{damp}

Rotation Drive By Non-Resonant Magnetic Fields

Drag to offset rotation

+ Enhancement of torque at slow rotation

Enhanced Torque Regime Accessed At Low Collisionality and Low Rotation

 At moderate rotation, transition from 1/v to v regime by reducing collisionality

Enhanced Torque Regime Accessed At Low Collisionality and Low Rotation

- At moderate rotation, transition from 1/v to v regime by reducing collisionality
- At sufficiently low collisionality, transition from ν to super-banana plateau (SBP) regime by reducing rotation (ω_F)
- Neoclassical transport expected to be enhanced in SBP regime

Evidence Found for Increased Torque as Enter Regime of Low Rotation / Radial Electric Field

- Rotation feedback control used to measure NRMF torque
 - NBI torque compensated to account for NRMF torque
 - Has advantage that rotation stays within narrow rotation window
- Strong peaking of NRMF torque found at low radial electric field

Evidence Found for Increased Torque as Enter Regime of Low Rotation / Radial Electric Field

- Rotation feedback control used to measure NRMF torque
 - NBI torque compensated to account for NRMF torque
 - Has advantage that rotation stays within narrow rotation window
- Strong peaking of NRMF torque found at low radial electric field

Increased NRMF Torque At Low Rotation Also Indicated On NSTX

Braking increases at low rotation

- No apparent mode activity
- Does not appear to be resonant braking effect

Transition to faster braking?

Outline: Recent Techniques for Manipulating Rotation

$$mnR \frac{\partial V_{\phi}}{\partial t} = \sum_{\substack{\Pi \text{ Input torque} \\ \text{angular momentum}}} \nabla \cdot \Pi_{\phi} \left(\frac{mnR(V_{\phi} - V_{\phi})}{\tau_{damp}} \right) \dots$$

$$\nabla \cdot \Pi_{\phi}$$
 \longrightarrow

Intrinsic Rotation Drive

Generation at the edge

- + Inward pinch of momentum
- + Additional drive in core

 Sheared rotation profiles

 $\tau_{\it damp}$

Rotation Drive By Non-Resonant Magnetic Fields

Drag to offset rotation

+ Enhancement of torque at slow rotation

Enhanced NRMF Torque at Low Rotation Helps Expand Operating Space of QH-Mode Plasmas

- QH-mode plasmas have H-mode pedestal without ELMs
 - Edge harmonic oscillation (EHO) replaces role of ELMs
- NBI torque ramps used to investigate minimum rotation requirements
- Application of NRMF adds counter torque to the plasma
 - Maintains larger plasma rotation for the same torque
- NRMF torque at low rotation acts as barrier to prevent further slowing of rotation

Analysis of Time History of Rotation Indicates NRMF Torque Increases At Low Rotation

- Obtain dependence of intrinsic torque and viscous transport on angular momentum from reference shot
- NRMF torque in shot with n=3 is remainder after including NBI, intrinsic and viscous transport

Analysis of Time History of Rotation Indicates NRMF Torque Increases At Low Rotation

- Obtain dependence of intrinsic torque and viscous transport on angular momentum from reference shot
- NRMF torque in shot with n=3 is remainder after including NBI, intrinsic and viscous transport
- NRMF torque density increases at low angular momentum
 - Consistent with SBP enhancement

Conclusions

- Edge pedestal capable of creating residual stress resulting in a drive for edge intrinsic rotation
- Coupled with core pinch, can provide rotation shear in core
- Physics of core residual stress is much more complicated
- Non-resonant magnetic fields can drive rotation due to existence of offset rotation
- NRMF torque found to be enhanced at low rotation
- All together, may provide many opportunities for rotation control
 and performance optimization for ITER

