

Advances in High-Harmonic Fast Wave Physics in NSTX*

Gary Taylor¹

In collaboration with

J-W. Ahn², R.E. Bell¹, P.T. Bonoli³, T. Brecht⁴,
G. Chen², M. Choi⁵, D.L. Green², R.W. Harvey⁶,
W.W. Heidbrinkⁿ, J.C. Hosea¹, E.F. Jaeger²,
B.P. LeBlanc¹, D. Liuⁿ, R. Maingi², C.K. Phillips¹,
M. Podesta¹, P.M. Ryan², E.J. Valeo¹, J.B. Wilgen²,
J.R. Wilson¹, and the NSTX Team
¹Princeton Plasma Physics Laboratory
²Oak Ridge National Laboratory
³Massachusetts Institute of Technology
⁴University of Minnesota
⁵General Atomics
⁶CompX
¬University of California Irvine

* Work supported by US DoE contract DE-AC02-09CH11466

51st APS DPP Meeting Atlanta, Georgia, November 5, 2009

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U Tokyo JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA. Frascati CEA. Cadarache IPP. Jülich IPP. Garching ASCR, Czech Rep **U** Quebec

Culham Sci Ctr

General Atomics
INL
Johns Hopkins U
LANL
LLNL
Lodestar
MIT
Nova Photonics
New York U
Old Dominion U
ORNL
PPPL
PSI
Princeton U
Purdue U
SNL

Think Tank, Inc.

UC Davis

UC Irvine

U Colorado

U Marvland

U Rochester

U Washington

U Wisconsin

UCLA

UCSD

College W&M
Colorado Sch Mines

Columbia U

Comp-X

HHFW Heating & Current Drive being Developed for Non-Inductive Ramp-up, Bulk Heating & q(0) Control

Ultimately Spherical Torus needs to run non-inductively

HHFW Requirements

- (2) HHFW needed for I_P overdrive through bootstrap & HHFW current drive (CD)
- (3) HHFW needs to generate sufficient I_P to confine NBI ions
- (4) HHFW needs to provide q(0) control & bulk heating in H-mode

Strong Single-Pass RF Damping; Edge RF Power Losses Near Antenna Dominate

AORSA: $|E_{RF}|$ field amplitude for $k_{\phi} = -8 \text{ m}^{-1} \& 101 \text{ n}_{\phi} \text{ modes}$

- Maximize η_{eff} in NBI + HHFW plasmas by understanding
 & mitigating edge RF losses
 - Important for ICRF on ITER
- η_{eff} degrades when n_e near antenna exceeds critical density (n_{crit}) for perpendicular fast wave propagation
- Li conditioning reduces edge n_e ; moves n_{crit} away from antenna & improves η_{eff}
- Studying RF edge loss in NSTX
 & RF interaction with fast-ions

Lithium Wall Conditioning Enabled HHFW to Provide Core Electron Heating Early in I_D Ramp

- Brief introduction to the NSTX HHFW system
- Improved HHFW heating with lithium conditioning
 - First Core HHFW electron heating observed in NBI H-mode
- RF interaction with plasma edge, divertor & fast-ions
 - Direct RF power flow to divertor, RF edge heating & clamping
 - Measured significant RF interaction with fast-ions
- Recent results with new double end-fed antenna
 - Increased arc-free power capability, RF H-modes in He & D₂
- Summary

- Brief introduction to the NSTX HHFW system
- Improved HHFW heating with lithium conditioning
 - First Core HHFW electron heating observed in NBI H-mode
- RF interaction with plasma edge, divertor & fast-ions
 - Direct RF power flow to divertor, RF edge heating & clamping
 - Measured significant RF interaction with fast-ions
- Recent results with new double end-fed antenna
 - ➤ Increased arc-free power capability, RF H-modes in He & D₂
- Summary

NSTX Antenna Produces Well Defined Fast Wave Spectrum for Studying Heating & Current Drive (CD)

HHFW antenna extends toroidally 90°

Brief introduction to the NSTX HHFW system

- Improved HHFW heating with lithium conditioning
 - First Core HHFW electron heating observed in NBI H-mode
- RF interaction with plasma edge, divertor & fast-ions
 - Direct RF power flow to divertor, RF edge heating & clamping
 - Measured significant RF interaction with fast-ions
- Recent results with new double end-fed antenna
 - ➤ Increased arc-free power capability, RF H-modes in He & D₂
- Summary

Lithium Wall Conditioning Enabled NSTX Record $T_e(0)$ in He & D_2 in L-Mode with $P_{RF} \sim 3$ MW

$$B_{T}(0) = 0.55 T$$

Lithium reduces edge density –
 improves core heating efficiency

Lithium Enabled Significant HHFW Heating of Core Electrons During NBI D₂ H-modes

[B. LeBlanc, et al, AIP Conf. Proc. 787, 86 (2005)]

Large Type 1 ELM Often Follows HHFW Power Turn-off or Arc During D₂ H-Modes

- Strong edge pressure gradient appears to lead to ELM
- Arcs occur prior to excursion of D_{α} light
- Arcs due to sputtering in antenna
- Similar behavior observed for k_Φ = -8 m⁻¹ heating

H-mode Initiated & Maintained Through ELMs with $P_{RF} \sim 2.7$ MW During ~ 2 MW D_2 NBI

Transition to H-mode occurs after RF turn on and without RF arc

- Brief introduction to the NSTX HHFW system
- Improved HHFW heating with lithium conditioning
 - ➤ First Core HHFW electron heating observed in NBI H-mode

- RF interaction with plasma edge, divertor & fast-ions
 - Direct RF power flow to divertor, RF edge heating & clamping
 - Measured significant RF interaction with fast-ions
- Recent results with new double end-fed antenna
 - ➢ Increased arc-free power capability, RF H-modes in He & D₂
- Summary

Core Heating Efficiency Degrades with Decreasing k_{\phi} in L-Mode & H-Mode Plasmas

- Also measure a degradation in core heating efficiency with decreasing k_φ In D₂ H-mode:
 - \succ ~ 66% efficiency at k_{ϕ} = -13 m⁻¹, decreasing to ~40% at k_{ϕ} = -8 m⁻¹

1-D Full Wave Model Predicts $P_{RF} \sim 100-200$ kW Can Drive PDI; P_{RF} Needed to Drive PDI Falls with k_{ϕ}

C-III Passive Spectroscopic T_i Shows PDI Heating of Edge Ions 1-D Full Wave Model Shows Dependence of PDI Threshold on $k_{\scriptscriptstyle \varphi}$

 Previously estimated 16 - 23 % RF power lost to PDI, through collisional coupling of energetic ions to edge electrons

[T. Biewer et al, Phys. Plasmas 12, 056108 (2005)]

Toroidal Edge Rotation Appears to Lock During RF, Especially at Lower k_b

V_{tor} Measured by Charge Exchange Recombination Spectroscopy

- Mechanism not understood, but may point to edge ion loss
- RF apparently provides a drag on core plasma rotation as well

Visible & IR Measurements Show Higher RF Power to Divertor for Lower k_b

Visible Camera

$$P_{nbi} = 2 MW$$

$$P_{rf} = 1.8 \text{ MW}$$

 $k_{\phi} = -8 \text{ m}^{-1}$
 $P_{nbi} = 2 \text{ MW}$

- "Hot" region in outboard divertor more pronounced at $k_{\phi} = -8 \text{ m}^{-1} \text{ than } 13 \text{ m}^{-1}$
- Linked along field lines to scrape-off plasma in front of antenna
- 3 MW/m² measured by IR camera during 2.6 MW of $k_{\phi} = -8 \text{ m}^{-1} \text{ RF heating}$

AORSA with Boundary Extended Outside Separatrix Predicts More Extensive |E_{RF}| in Scrape-off at Low k_b

2-D AORSA Full Wave Model :

|E_{RF}| Field Amplitude

Preliminary Results

Significant RF Power Deposition on Slowing NBI lons in Core During H-Mode, Particularly at Lower k_b

Modeling does not include RF acceleration of fast ions

Interaction Between NBI Ions & HHFW Can Be Significant

- Measured acceleration of NBI fast-ions and large increase in neutron rate during HHFW + NBI plasmas
 - As predicted originally by CQL3D/GENRAY
- Measured significant enhancement & broadening of fast-ion profile when HHFW power is applied

- Brief introduction to the NSTX HHFW system
- Improved HHFW heating with lithium conditioning
 - ➢ First Core HHFW electron heating observed in NBI H-mode
- RF interaction with plasma edge, divertor & fast-ions
 - Direct RF power flow to divertor, RF edge heating & clamping
 - Measured significant RF interaction with fast-ions

- Recent results with new double end-fed antenna
 - Increased arc-free power capability, RF H-modes in He & D₂
- Summary

Double End-Fed Upgrade Installed for 2009 Campaign Shifts Ground from End to Strap Center

- Goal was to bring system voltage limit with plasma (~15 kV) up to its vacuum limit (~25 kV):
 - Would increase power limit by ~ 2.8 times
- Tests whether electric field in strap/Faraday shield sets limit for plasma operation

Double End-Fed Antenna Performance Significantly Improved Compared to 2008 Operation

- Modifications to external transmission line completed in June
 - Operated RF in July & August
- New antenna reached 2-3 MW more quickly than previous antenna
- HHFW performance significantly improved over last year:
 - > Coupled > 4 MW into He L-mode
 - $ightharpoonup T_e(0) \sim 6.2 \text{ keV with P}_{rf} \sim 2.7 \text{ MW}$
 - ➤ Maintained HHFW coupling through L-H transition and during relatively large repetitive ELMs during D₂ NBI-fuelled H-modes
 - ➤ Studied L-H and H-L transition in He & D₂ with RF

Large Particle Eruptions Observed with TV Cameras, Sometimes Resulting in Antenna Arcs

Visible TV Camera

Antenna Coated with Li after Campaign

 Arcs probably occur when particles enter high voltage region inside Faraday shield

- Brief introduction to the NSTX HHFW system
- Improved HHFW heating with lithium conditioning
 - First Core HHFW electron heating observed in NBI H-mode
- RF interaction with plasma edge, divertor & fast-ions
 - Direct RF power flow to divertor, RF edge heating & clamping
 - Measured significant RF interaction with fast-ions
- Recent results with new double end-fed antenna
 - ➤ Increased arc-free power capability, RF H-modes in He & D₂

Summary

Significantly Improved HHFW Operation with Li Conditioning & Double End-Fed Antenna

- Significant progress in heating early I_p ramp & during NBI H-mode
 - ➤ Li reduced edge n_e enabling first core HHFW electron heating during NBI H-mode
 - Coupling maintained through L-H transition and during ELMs
 - Significant RF acceleration of NBI fast-ions

 - First operation of the double end-fed antenna has been encouraging
 - ➤ Increased arc-free power capability & produced RF H-modes in He & D₂
 - ➤ In 2010 use upgraded antenna with new liquid lithium divertor to improve coupling in H-modes and during I_p ramp