The resistive wall mode (RWM) is disruptive; it is important
to understand the physics of its stabilization

e Motivation
— The RWM limits plasma pressure and leads to disruptions.
— Physics of RWM stabilization is key for extrapolation to:

e sustained operation of a future NBI driven, rotating ST-CTF, and
e disruption-free operation of a low rotation burning plasma (ITER).

o OUtline For more, see [Sabbagh, P4.160]
— RWMs are observed and diagnosed routinely in NSTX.

— Kinetic RWM stabilization theory predicts rotational resonances of
thermal particles and stabilizing effect of energetic particles.

— Comparison of theory and NSTX experimental results shows window
of intermediate w,, with weakened stability.

— Dedicated NSTX experiment examined the role of energetic particles.
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The RWM is identified in NSTX by a variety of observations
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— Growing signal on low frequency poloidal magnetic sensors
— Global collapse in USXR signals, with no clear phase inversion
— Causes a collapse in B and disruption of the plasma
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Kinetic 8W, term in the RWM dispersion relation
provides dissipation that enables stabilization

A momentum balance:

_ leads to an energy balance:

The change in potential energy due to the kinetic pressure is:

Dissipation from kinetic Calculation of 8W, with the
term enables stabilization MISK code includes:
of the RWM: — Trapped Thermal lons and Electrons

— Circulating Thermal lons
(1= i) =~ - Alfven Layers (analytic

— Trapped Energetic Particles

[B. Hu et al., Phys. Plasmas 12, 057301 (2005)]
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Full MISK calculation shows that trapped thermal ions are
the most important contributors to stability
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e Examine 6W, from each particle type vs. W
— Thermal ions are the most important contributor to stability.
— Flat areas are rational surface layers (integer g £ 0.2).

e Entire profile is important, but g > 2 contributes ~60%

— RWM eigenfunction and temperature, density gradients are
large in this region.
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When the rotation is in resonance, the plasma is stable
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e Stable cases in bounce resonance at high rotation

e Stable cases in precession drift resonance at low rotation
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Scaling the experimental rotation profile illuminates the
complex relationship between rotation and stability
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The weakened stability rotation gap is altered
by changing collisionality

* Scan of wy and collisionality

— scale n & T at constant _
— Changing v shifts the rotation
of weakened stability.

[J. Berkery et al., Phys. Rev. Lett. (w¢/wA)q=2 (%)
104, 035003 (2010)] 0 2 /

6

NSTX experimental instability
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Widely different experimentally marginally stable rotation
profiles each are in the gap between stabilizing resonances

— Sometimes the stability
reduction is not enough to
guantitatively reach marginal

— Investigating sensitivities to
inputs.
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MISK computed RWM stability of ITER scenario 4 including
energetic particles near marginal at B, = 3

e |TER advanced scenario 4

— With B, =3 (20% above n =
1 no-wall limit)

— Polevoi rotation profile

e Energetic particle effect

— |Isotropic slowing down
distribution of alphas

— Near RWM marginal
stability at expected

Ba/ Btotal

e Plasma rotation effect ' ITER Scenario 4

— Stabilizing precession drift
5P B e, 00 03 06 09 12 15 18
resonance wg, = 0.8 Wy, 0./,
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Energetic particles provide a stabilizing force that is nearly
independent of rotation and collisionality
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Significant Re(6W,), but nearly independent of w,,

Energetic particles are not in mode resonance

Effect is not energy dissipation, but rather a restoring force
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An NSTX experiment examined the role of energetic
particles in RWM stability
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e Present model, with improvements, can explain exps.
— NSTX: low EP: unstable more often, rotational resonances seen
— DIII-D: higher EP: mode stable except when triggered by fishbones
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Anisotropic distribution function of beam ions impacts
stability; work continues on improving model
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RWM stabilization model is being carefully
assessed for sensitivities

Pertu rbatlve VS. Self_ 3/terative incllusion ofu)‘, with T, =|5 ms %0)2,,,"“’
. — T « 0.4
consistent approaches 5 of L 58
— Is € changed by kinetic S 1/’(*-- : %%
effects? D | P i

— Non-linear inclusion of w ol . r»=00] 02}, 04l

0 1 2 3 4 5

Re(d0Wy)

e Sensitivity of code to inputs

— Calculation is sensitive to profiles. Also, the select of Aq for

analytic treatment around rational surfaces (shown above)

e 7Zero banana width approximation

— Since RWM is a global mode, this effect may be minimal

These effects are not enough to explain quantitative disagreement.

Improvements to theoretical model are needed...
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Advancements in the theoretical model continue

Electrostatic effect

The electrostatic component of the perturbed
distribution function contributes to 6W. This effect
is likely to be small, however.

[B. Hu et al., Phys. Plasmas 12, 057301 (2005)]

Additional anisotropic term

In addition to the effect of anisotropy on 6W,,
when fis anisotropic an additional term arises that
is proportional ‘B

Centrifugal destabilization

This fluid force term is usually neglected, but it is

always destabilizing, and could be important if the
plasma rotation Mach number is significant, or for
alpha particles rotating at higher frequency ~ wx,,.

Other possibilities:

— Inclusion of plasma inertia term in the
dispersion relation.
— Effect of poloidal rotation on wg (small).

— Use of a Lorentz collisionality model instead of
current ad-hoc inclusion of collisionality.
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Kinetic RWM stability model is developed, with comparison
to NSTX experiments and application to ITER

e Kinetic effects contribute to stabilization of the RWM,
and thermal ion resonances can explain the complex
relationship between plasma rotation and stability.

e The MISK code is used to calculate the RWM growth rate
with kinetic effects for NSTX and ITER.

e Computations indicate that energetic particles have a
stabilizing effect, consistent with NSTX experiments.

e |[mprovements to modeling continue, particularly an
improved beam ion anisotropic distribution.
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