Introduction & Motivation

Divertor peak heat flux evolves during discharge

Heat flux width, A, contracts with I,
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Overview of the National Spherical Torus eXperiment

Determine dependence of A
NSTX data

on external parameters from

Projections for NSTX-U peak heat flux show that divertor heat
flux must be mitigated
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Auxiliary Heating:
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ctagnosic RF (30 MHz) <MW
h Central Temperature 1—6 keV/

Central Density < 1.2(10)2 m3

* All data is time averaged over ELMs and before lithium
coatings were applied

< IRt surface which is
used to estimate heat flux profile g;,°“(r,t) and calculate
divertor power loading: P = [ 2aR; g dr

« Define characteristic divertor heat flux scale length, A4, 4,
[Loarte 1999]: 7%, = Py’ /(2aR . e

« Assume AU, , related to characteristic midplane scale
length through flux expansion, £, such that:
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NSTX utilizes evaporative lithium position on Graphite tiles
as the primary plasma facing surface
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Peak heat flux decreases inversely with flux
expansion with roughly constant A,
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Resultant divertor heat flux profile is narrowed with use of
lithium coatings

+ NSTX began the FY10 run campaign

Qeiv peak decreases as flux °
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Upgraded NSTX expected to be online in FY2015

Heat flux width A,™ largely independent of P, in attached
plasmas

Experiments on NSTX have successfully mapped out the behavior of the
divertor heat flux with many engineering parameters

+ Doubling of neutral beam heating
power to 15 MW

+ Increase in pulse length to 5 s

+ Will represent a significant increase
in expected power deposited onto
the divertor

+ Techniques to handle the high power
densities in NSTX-U are required

N Present NBI
(Rray=110, 120, 1306m) (R 0, €0, 706m)

NSTX-U Operating Parameters [Menard 2010]
Plasma Current, |, <2 MA

Toroidal Field, B, 1T
Heating Power, sy, 15 MW (NBI) 5 MW (RF)
Pulse Length <55
PIR_RIA 20 MWim, 0.4 MWim?
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ORNL IR system currently on NSTX

1000 RetOLT08MA L peak divertor heat flux increases
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R Apparent change in slope near
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— Divertor transitions from a radiative/

detached divertor to an attached
divertor

Radiatvel
Deacnea. | Atachea

C i

K ~ Similar to previous experiments
suggesting a radiative detached

b divertor at low Py, [Paul 2005, Maingi
2007)

Aqm9 relatively independent of Py,
in high heat flux regime
— P> 4 MW
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- By magnetically mapping the divertor heat flux profile, %" to the
midplane, it's dependencies on heating power and flux expansion
are eliminated

~ Yielding only 2,7 = (1)
« 24" contracts strongly with increasing plasma current
~ This has been observed on DIII-D and JET as well
+ Implications lur NSTX U at full design capabilties of I, = 2 MA and
Pya= 10 MW
~ Operations wun a \avge magnetic flux expansion will be necessary to mitigate
the expected large heat fluxes
~ Or operating with a detached divertor via divertor gas pufing will be necessary

+ The full effect of thin lithium coatings is still being explored, but initial
results show a further contraction of ).qd“‘ that is not yet understood

~ “This will be adcressed by the use of a 2 color IR camera this un campaign
[MoLean 2010]
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Heat flux width A, largely independent of P, in attached
plasmas
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FY 2010 experiments and analysis plan

* Two slow (30 Hz) IR 2 =05 fup=B 1,208 MA + Measure I, Py, N, B, dependences on heat flux profile with
cameras e + Add in high b data lithium at high 1, for improved scaling
© Do omega teorizs i, - Quantify density and of heat flux profiles and asses the
- uncooled microbolometer s { «+ Narrow Py, plot impact of lithium coatings
- 157 FOVof lower divertor LR | anes ange « Further development of snowflake divertor and magnetic flux
z - Za:‘ge“gn;ia:ngafoc % T e J . expansion to mitigate heat flux
= ' oL+ Apparentl,or qe D ~ see Poster 1-28: V. "Snowflake divertor
A B effect at higher 20 in NSTX' for more information
Onofast (1.6.7.0 kiz) IR . triangularity - New data with LLD
O s Bt Focel ot . ~ New 2 color IR measurements  more reliable estimate of heat flux
Plane, 128128 pixel & L « ams reducedfor £ 10 with lithium thin films due to the high emissivity of lithium
~ LN,-cooled <2 ; higher , higher I, < ~ Including evaporative cooling
= 15.5°FOV of lower T 1 Radtawel | discharges ° « Assess replacing lower inboard divertor C tiles with Mo
- :‘sz":"nfﬁ‘?:" s v 130 DD““’*‘“” L “":'"”! o0, ) — Improved chemical compatibility with evaporative lithium coatings
window ot g — More relevant to fusion reactor scenarios
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